DSSAU-Net:U-Shaped Hybrid Network for Pubic Symphysis and Fetal Head Segmentation
- URL: http://arxiv.org/abs/2506.03684v1
- Date: Wed, 04 Jun 2025 08:14:18 GMT
- Title: DSSAU-Net:U-Shaped Hybrid Network for Pubic Symphysis and Fetal Head Segmentation
- Authors: Zunhui Xia, Hongxing Li, Libin Lan,
- Abstract summary: We propose a sparse self-attention network architecture with good performance and high computational efficiency.<n>We use Dual Sparse Selection Attention (DSSA) blocks at each stage to form a symmetric U-shaped encoder-decoder network architecture.<n>The performance of DSSAU-Net has been validated using the Intrapartum Ultrasound Grand Challenge (IUGC) 2024.
- Score: 1.474723404975345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the childbirth process, traditional methods involve invasive vaginal examinations, but research has shown that these methods are both subjective and inaccurate. Ultrasound-assisted diagnosis offers an objective yet effective way to assess fetal head position via two key parameters: Angle of Progression (AoP) and Head-Symphysis Distance (HSD), calculated by segmenting the fetal head (FH) and pubic symphysis (PS), which aids clinicians in ensuring a smooth delivery process. Therefore, accurate segmentation of FH and PS is crucial. In this work, we propose a sparse self-attention network architecture with good performance and high computational efficiency, named DSSAU-Net, for the segmentation of FH and PS. Specifically, we stack varying numbers of Dual Sparse Selection Attention (DSSA) blocks at each stage to form a symmetric U-shaped encoder-decoder network architecture. For a given query, DSSA is designed to explicitly perform one sparse token selection at both the region and pixel levels, respectively, which is beneficial for further reducing computational complexity while extracting the most relevant features. To compensate for the information loss during the upsampling process, skip connections with convolutions are designed. Additionally, multiscale feature fusion is employed to enrich the model's global and local information. The performance of DSSAU-Net has been validated using the Intrapartum Ultrasound Grand Challenge (IUGC) 2024 \textit{test set} provided by the organizer in the MICCAI IUGC 2024 competition\footnote{\href{https://codalab.lisn.upsaclay.fr/competitions/18413\#learn\_the\_details}{https://codalab.lisn.upsaclay.fr/competitions/18413\#learn\_the\_details}}, where we win the fourth place on the tasks of classification and segmentation, demonstrating its effectiveness. The codes will be available at https://github.com/XiaZunhui/DSSAU-Net.
Related papers
- Pubic Symphysis-Fetal Head Segmentation Network Using BiFormer Attention Mechanism and Multipath Dilated Convolution [6.673262517388075]
Pubic symphysis-fetal head segmentation in transperineal ultrasound images plays a critical role for the assessment of fetal head descent and progression.
We introduce a dynamic, query-aware sparse attention mechanism for ultrasound image segmentation.
We propose a novel method, named BRAU-Net, to solve the pubic symphysis-fetal head segmentation task.
arXiv Detail & Related papers (2024-10-14T10:14:04Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
arXiv Detail & Related papers (2024-02-25T13:22:17Z) - BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation [11.986549780782724]
We propose a hybrid yet effective CNN-Transformer network, named BRAU-Net++, for an accurate medical image segmentation task.
Specifically, BRAU-Net++ uses bi-level routing attention as the core building block to design our u-shaped encoder-decoder structure.
Our proposed approach surpasses other state-of-the-art methods including its baseline: BRAU-Net.
arXiv Detail & Related papers (2024-01-01T10:49:09Z) - Evaluate Fine-tuning Strategies for Fetal Head Ultrasound Image Segmentation with U-Net [0.0]
We propose a Transfer Learning (TL) method to train a CNN network from scratch.
Our approach involves fine-tuning (FT) a U-Net network with a lightweight MobileNet as the encoder.
Our proposed FT strategy outperforms other strategies with smaller trainable parameter sizes below 4.4 million.
arXiv Detail & Related papers (2023-07-18T08:37:58Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
Click-based interactive segmentation (IS) aims to extract the target objects under user interaction.
Most of the current deep learning (DL)-based methods mainly follow the general pipelines of semantic segmentation.
We propose to formulate the IS task as a Gaussian process (GP)-based pixel-wise binary classification model on each image.
arXiv Detail & Related papers (2023-02-28T14:01:01Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Semi-Supervised Hybrid Spine Network for Segmentation of Spine MR Images [14.190504802866288]
We propose a two-stage algorithm, named semi-supervised hybrid spine network (SSHSNet) to achieve simultaneous vertebral bodies (VBs) and intervertebral discs (IVDs) segmentation.
In the first stage, we constructed a 2D semi-supervised DeepLabv3+ by using cross pseudo supervision to obtain intra-slice features and coarse segmentation.
In the second stage, a 3D full-resolution patch-based DeepLabv3+ was built to extract inter-slice information.
Results show that the proposed method has great potential in dealing with the data imbalance problem
arXiv Detail & Related papers (2022-03-23T02:57:14Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z) - Searching Central Difference Convolutional Networks for Face
Anti-Spoofing [68.77468465774267]
Face anti-spoofing (FAS) plays a vital role in face recognition systems.
Most state-of-the-art FAS methods rely on stacked convolutions and expert-designed network.
Here we propose a novel frame level FAS method based on Central Difference Convolution (CDC)
arXiv Detail & Related papers (2020-03-09T12:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.