論文の概要: Sharpness-Aware Minimization Efficiently Selects Flatter Minima Late in Training
- arxiv url: http://arxiv.org/abs/2410.10373v1
- Date: Mon, 14 Oct 2024 10:56:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 22:04:40.527724
- Title: Sharpness-Aware Minimization Efficiently Selects Flatter Minima Late in Training
- Title(参考訳): 遅発性フラッターミニマを効果的に選択するシャープネスを意識した最小化法
- Authors: Zhanpeng Zhou, Mingze Wang, Yuchen Mao, Bingrui Li, Junchi Yan,
- Abstract要約: Sharpness-Aware Minimization (SAM) はトレーニングの遅滞時に効率よくフラットなミニマを選択する。
SAMの訓練の終わりに応用されたいくつかのエポックでさえ、完全なSAMトレーニングとほぼ同じ一般化と解のシャープネスをもたらす。
我々は、最終解の物性を形作る上で、最終相で選択した最適化法がより重要であると推測する。
- 参考スコア(独自算出の注目度): 47.25594539120258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sharpness-Aware Minimization (SAM) has substantially improved the generalization of neural networks under various settings. Despite the success, its effectiveness remains poorly understood. In this work, we discover an intriguing phenomenon in the training dynamics of SAM, shedding lights on understanding its implicit bias towards flatter minima over Stochastic Gradient Descent (SGD). Specifically, we find that SAM efficiently selects flatter minima late in training. Remarkably, even a few epochs of SAM applied at the end of training yield nearly the same generalization and solution sharpness as full SAM training. Subsequently, we delve deeper into the underlying mechanism behind this phenomenon. Theoretically, we identify two phases in the learning dynamics after applying SAM late in training: i) SAM first escapes the minimum found by SGD exponentially fast; and ii) then rapidly converges to a flatter minimum within the same valley. Furthermore, we empirically investigate the role of SAM during the early training phase. We conjecture that the optimization method chosen in the late phase is more crucial in shaping the final solution's properties. Based on this viewpoint, we extend our findings from SAM to Adversarial Training.
- Abstract(参考訳): シャープネス認識最小化(SAM)は、さまざまな設定下でのニューラルネットワークの一般化を大幅に改善した。
成功にもかかわらず、その効果はよく分かっていない。
本研究では,SGD (Stochastic Gradient Descent) 上の平坦なミニマに対する暗黙の偏りを理解するために,SAMのトレーニング力学における興味深い現象を発見した。
具体的には, SAM はトレーニングの遅れ時に, フラットなミニマを効率よく選択する。
注目すべきは、トレーニングの終了時に応用されたSAMのエポックでさえ、完全なSAMトレーニングとほぼ同じ一般化と解のシャープネスをもたらすことである。
その後、この現象の背後にあるメカニズムを深く掘り下げる。
理論的には、SAMを適用した後に学習力学の2つの段階を同定する。
一 SAMは、最初に、SGDが指数的に高速に発見した最小限から脱出する。
二 急速に同じ谷内の平らな最低限に収束する。
さらに,初等訓練段階におけるSAMの役割を実証的に検討した。
我々は、最終解の物性を形作る上で、最終相で選択した最適化法がより重要であると推測する。
この観点から,SAMから逆行訓練へ知見を拡張した。
関連論文リスト
- Bilateral Sharpness-Aware Minimization for Flatter Minima [61.17349662062522]
Sharpness-Aware Minimization (SAM) は Max-Sharpness (MaxS) を減らして一般化を促進する
本稿では,現在の重量を囲む周辺地域のトレーニング損失と最小損失の差を利用して,Min-Sharpness (MinS) と表現する。
MaxSとMinSをマージすることで、最適化中により平坦な方向を示すより良いFIを作成しました。特に、このFIをSAMと組み合わせて提案されたバイラテラルSAM(BSAM)に組み込むことにより、SAMよりもより平坦な最小値を求めることができます。
論文 参考訳(メタデータ) (2024-09-20T03:01:13Z) - Friendly Sharpness-Aware Minimization [62.57515991835801]
シャープネス・アウェアの最小化(SAM)は、トレーニング損失とロスシャープネスの両方を最小化することにより、ディープニューラルネットワークトレーニングの改善に役立っている。
対向性摂動におけるバッチ特異的勾配雑音の主な役割,すなわち現在のミニバッチ勾配について検討する。
逆勾配雑音成分を分解することにより、全勾配のみに依存すると一般化が低下し、除くと性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-19T01:39:33Z) - Stabilizing Sharpness-aware Minimization Through A Simple Renormalization Strategy [12.050160495730381]
SAM ( sharpness-aware generalization) は性能向上に驚くべき効果があることから注目されている。
本稿では, 安定SAM (SSAM) と呼ばれる単純な再正規化戦略を提案する。
我々の戦略は実装が容易で、SAMとその変種と統合するのに十分な柔軟性があり、ほとんど計算コストがかからない。
論文 参考訳(メタデータ) (2024-01-14T10:53:36Z) - Why Does Sharpness-Aware Minimization Generalize Better Than SGD? [102.40907275290891]
シャープネス・アウェアの最小化(SAM)がデータモデルや2層畳み込みReLUネットワークに対してグラディエントDescent(SGD)よりも優れていることを示す。
その結果,SAMの利点,特に早期の雑音学習を防止し,特徴のより効果的な学習を容易にする能力について解説した。
論文 参考訳(メタデータ) (2023-10-11T07:51:10Z) - AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning
Rate and Momentum for Training Deep Neural Networks [76.90477930208982]
シャープネス認識(SAM)は、ディープニューラルネットワークのトレーニングにおいて、より一般的なものにするため、広範囲に研究されている。
AdaSAMと呼ばれる適応的な学習摂動と運動量加速度をSAMに統合することはすでに検討されている。
いくつかのNLPタスクにおいて,SGD,AMS,SAMsGradと比較して,AdaSAMが優れた性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2023-03-01T15:12:42Z) - mSAM: Micro-Batch-Averaged Sharpness-Aware Minimization [20.560184120992094]
シャープネス・アウェアの最小化手法は、フラットな最小化に向けて勾配降下法を操る基本損失関数を変更する。
我々は最近開発されたフラットネス解析のためのよく研究された一般的なフレームワークを拡張し、SAMがSGDよりもフラットなミニマを達成し、mSAMがSAMよりもフラットなミニマを達成できることを理論的に示す。
論文 参考訳(メタデータ) (2023-02-19T23:27:12Z) - Improved Deep Neural Network Generalization Using m-Sharpness-Aware
Minimization [14.40189851070842]
シャープネス・アウェア最小化(SAM)は、基礎となる損失関数を修正し、フラットなミニマへ導出する方法を導出する。
近年の研究ではmSAMがSAMよりも精度が高いことが示唆されている。
本稿では,様々なタスクやデータセットにおけるmSAMの包括的評価について述べる。
論文 参考訳(メタデータ) (2022-12-07T00:37:55Z) - Towards Efficient and Scalable Sharpness-Aware Minimization [81.22779501753695]
内部勾配の上昇を周期的に計算する新しいアルゴリズム LookSAM を提案する。
LookSAMはSAMと同じような精度を実現し、非常に高速である。
Vision Transformer(ViTs)のトレーニングでバッチサイズのスケールアップに成功したのは,私たちが初めてです。
論文 参考訳(メタデータ) (2022-03-05T11:53:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。