Advancing Newborn Care: Precise Birth Time Detection Using AI-Driven Thermal Imaging with Adaptive Normalization
- URL: http://arxiv.org/abs/2410.10483v1
- Date: Mon, 14 Oct 2024 13:20:51 GMT
- Title: Advancing Newborn Care: Precise Birth Time Detection Using AI-Driven Thermal Imaging with Adaptive Normalization
- Authors: Jorge García-Torres, Øyvind Meinich-Bache, Anders Johannessen, Siren Rettedal, Vilde Kolstad, Kjersti Engan,
- Abstract summary: We investigate the fusion of Artificial Intelligence (AI) and thermal imaging to develop the first AI-driven Time of Birth detector.
Our methodology involves a three-step process: first, we propose an adaptive normalization method based on Gaussian mixture models (GMM) to mitigate issues related to temperature variations.
A precision of 88.1% and a recall of 89.3% are reported in the detection of the newborn within thermal frames during performance evaluation.
- Score: 1.101731711817642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Around 5-10\% of newborns need assistance to start breathing. Currently, there is a lack of evidence-based research, objective data collection, and opportunities for learning from real newborn resuscitation emergency events. Generating and evaluating automated newborn resuscitation algorithm activity timelines relative to the Time of Birth (ToB) offers a promising opportunity to enhance newborn care practices. Given the importance of prompt resuscitation interventions within the "golden minute" after birth, having an accurate ToB with second precision is essential for effective subsequent analysis of newborn resuscitation episodes. Instead, ToB is generally registered manually, often with minute precision, making the process inefficient and susceptible to error and imprecision. In this work, we explore the fusion of Artificial Intelligence (AI) and thermal imaging to develop the first AI-driven ToB detector. The use of temperature information offers a promising alternative to detect the newborn while respecting the privacy of healthcare providers and mothers. However, the frequent inconsistencies in thermal measurements, especially in a multi-camera setup, make normalization strategies critical. Our methodology involves a three-step process: first, we propose an adaptive normalization method based on Gaussian mixture models (GMM) to mitigate issues related to temperature variations; second, we implement and deploy an AI model to detect the presence of the newborn within the thermal video frames; and third, we evaluate and post-process the model's predictions to estimate the ToB. A precision of 88.1\% and a recall of 89.3\% are reported in the detection of the newborn within thermal frames during performance evaluation. Our approach achieves an absolute median deviation of 2.7 seconds in estimating the ToB relative to the manual annotations.
Related papers
- Comparison of marker-less 2D image-based methods for infant pose estimation [2.7726930707973048]
The General Movement Assessment (GMA) is a video-based tool to classify infant motor functioning.
We compare the performance of available generic- and infant-pose estimators, and the choice of viewing angle for optimal recordings.
The results show that the best performing generic model trained on adults, ViTPose, also performs best on infants.
arXiv Detail & Related papers (2024-10-07T12:21:49Z) - Optimizing Resource Consumption in Diffusion Models through Hallucination Early Detection [87.22082662250999]
We introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process.
We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image.
Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario.
arXiv Detail & Related papers (2024-09-16T18:00:00Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - An Improved Model Ensembled of Different Hyper-parameter Tuned Machine
Learning Algorithms for Fetal Health Prediction [1.332560004325655]
We propose a robust ensemble model called ensemble of tuned Support Vector Machine and ExtraTrees for predicting fetal health.
Our proposed ETSE model outperformed the other models with 100% precision, 100% recall, 100% F1-score, and 99.66% accuracy.
arXiv Detail & Related papers (2023-05-26T16:40:44Z) - Activity Recognition From Newborn Resuscitation Videos [3.54339629317433]
A dataset of recorded signals during newborn resuscitation, including videos, has been collected in Haydom, Tanzania.
We propose a two-step deep neural network system, ORAA-net, to do activity recognition during newborn resuscitation.
The system recognized the activities newborn uncovered, stimulation, ventilation and suction with a mean precision of 77.67 %, a mean recall of 77,64 %, and a mean accuracy of 92.40 %.
arXiv Detail & Related papers (2023-03-14T11:04:32Z) - Neurodevelopmental Phenotype Prediction: A State-of-the-Art Deep
Learning Model [0.0]
We apply a deep neural network to analyse the cortical surface data of neonates.
Our goal is to identify neurodevelopmental biomarkers and to predict gestational age at birth based on these biomarkers.
arXiv Detail & Related papers (2022-11-16T11:15:23Z) - Automated Classification of General Movements in Infants Using a
Two-stream Spatiotemporal Fusion Network [5.541644538483947]
The assessment of general movements (GMs) in infants is a useful tool in the early diagnosis of neurodevelopmental disorders.
Recent video-based GMs classification has attracted attention, but this approach would be strongly affected by irrelevant information.
We propose an automated GMs classification method, which consists of preprocessing networks that remove unnecessary background information.
arXiv Detail & Related papers (2022-07-04T05:21:09Z) - Posterior temperature optimized Bayesian models for inverse problems in
medical imaging [59.82184400837329]
We present an unsupervised Bayesian approach to inverse problems in medical imaging using mean-field variational inference with a fully tempered posterior.
We show that an optimized posterior temperature leads to improved accuracy and uncertainty estimation.
Our source code is publicly available at calibrated.com/Cardio-AI/mfvi-dip-mia.
arXiv Detail & Related papers (2022-02-02T12:16:33Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.