Optimizing Resource Consumption in Diffusion Models through Hallucination Early Detection
- URL: http://arxiv.org/abs/2409.10597v1
- Date: Mon, 16 Sep 2024 18:00:00 GMT
- Title: Optimizing Resource Consumption in Diffusion Models through Hallucination Early Detection
- Authors: Federico Betti, Lorenzo Baraldi, Lorenzo Baraldi, Rita Cucchiara, Nicu Sebe,
- Abstract summary: We introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process.
We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image.
Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario.
- Score: 87.22082662250999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have significantly advanced generative AI, but they encounter difficulties when generating complex combinations of multiple objects. As the final result heavily depends on the initial seed, accurately ensuring the desired output can require multiple iterations of the generation process. This repetition not only leads to a waste of time but also increases energy consumption, echoing the challenges of efficiency and accuracy in complex generative tasks. To tackle this issue, we introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process. The HEaD pipeline combines cross-attention maps with a new indicator, the Predicted Final Image, to forecast the final outcome by leveraging the information available at early stages of the generation process. We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image, i.e. an image where all requested objects are accurately depicted. Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario and underscore the importance of early detection mechanisms in generative models.
Related papers
- Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
arXiv Detail & Related papers (2024-11-17T09:39:50Z) - High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity [69.32473738284374]
We propose DiffDIS, a diffusion-driven segmentation model that taps into the potential of the pre-trained U-Net within diffusion models.
By leveraging the robust generalization capabilities and rich, versatile image representation prior to the SD models, we significantly reduce the inference time while preserving high-fidelity, detailed generation.
Experiments on the DIS5K dataset demonstrate the superiority of DiffDIS, achieving state-of-the-art results through a streamlined inference process.
arXiv Detail & Related papers (2024-10-14T02:49:23Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder impacting a large aging population.
We propose an efficient early-late fusion (ELF) approach, which leverages a convolutional neural network for automated feature extraction and random forests.
To tackle the challenge of detecting subtle changes in brain volume, we transform images into the Jacobian domain (JD)
arXiv Detail & Related papers (2023-10-25T19:02:57Z) - Nested Diffusion Processes for Anytime Image Generation [38.84966342097197]
We propose an anytime diffusion-based method that can generate viable images when stopped at arbitrary times before completion.
In experiments on ImageNet and Stable Diffusion-based text-to-image generation, we show, both qualitatively and quantitatively, that our method's intermediate generation quality greatly exceeds that of the original diffusion model.
arXiv Detail & Related papers (2023-05-30T14:28:43Z) - Image Generation with Multimodal Priors using Denoising Diffusion
Probabilistic Models [54.1843419649895]
A major challenge in using generative models to accomplish this task is the lack of paired data containing all modalities and corresponding outputs.
We propose a solution based on a denoising diffusion probabilistic synthesis models to generate images under multi-model priors.
arXiv Detail & Related papers (2022-06-10T12:23:05Z) - Dynamic Dual-Output Diffusion Models [100.32273175423146]
Iterative denoising-based generation has been shown to be comparable in quality to other classes of generative models.
A major drawback of this method is that it requires hundreds of iterations to produce a competitive result.
Recent works have proposed solutions that allow for faster generation with fewer iterations, but the image quality gradually deteriorates.
arXiv Detail & Related papers (2022-03-08T11:20:40Z) - An Applied Deep Learning Approach for Estimating Soybean Relative
Maturity from UAV Imagery to Aid Plant Breeding Decisions [7.4022258821325115]
We develop a robust and automatic approach for estimating the relative maturity of soybeans using a time series of UAV images.
An end-to-end hybrid model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) is proposed to extract features.
Results suggest the effectiveness of our proposed CNN-LSTM model compared to the local regression method.
arXiv Detail & Related papers (2021-08-02T14:53:58Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.