論文の概要: Continual Learning Improves Zero-Shot Action Recognition
- arxiv url: http://arxiv.org/abs/2410.10497v1
- Date: Mon, 14 Oct 2024 13:42:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 21:14:59.054780
- Title: Continual Learning Improves Zero-Shot Action Recognition
- Title(参考訳): 連続学習によるゼロショット動作認識の改善
- Authors: Shreyank N Gowda, Davide Moltisanti, Laura Sevilla-Lara,
- Abstract要約: ゼロショット動作認識に対処するための連続学習に基づく新しい手法を提案する。
メモリは分類モデルをトレーニングするために使用され、古いクラスと新しいクラスの両方にバランスのとれた露出を確保する。
実験により、Em GILは目に見えないクラスにおける一般化を改善し、ゼロショット認識における新しい最先端を達成することが示された。
- 参考スコア(独自算出の注目度): 12.719578035745744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot action recognition requires a strong ability to generalize from pre-training and seen classes to novel unseen classes. Similarly, continual learning aims to develop models that can generalize effectively and learn new tasks without forgetting the ones previously learned. The generalization goals of zero-shot and continual learning are closely aligned, however techniques from continual learning have not been applied to zero-shot action recognition. In this paper, we propose a novel method based on continual learning to address zero-shot action recognition. This model, which we call {\em Generative Iterative Learning} (GIL) uses a memory of synthesized features of past classes, and combines these synthetic features with real ones from novel classes. The memory is used to train a classification model, ensuring a balanced exposure to both old and new classes. Experiments demonstrate that {\em GIL} improves generalization in unseen classes, achieving a new state-of-the-art in zero-shot recognition across multiple benchmarks. Importantly, {\em GIL} also boosts performance in the more challenging generalized zero-shot setting, where models need to retain knowledge about classes seen before fine-tuning.
- Abstract(参考訳): ゼロショットのアクション認識は、事前学習や見知らぬクラスから新しい見知らぬクラスまでを一般化する強力な能力を必要とする。
同様に、継続学習は、効果的に一般化し、以前に学んだことを忘れずに新しいタスクを学習できるモデルを開発することを目的としている。
ゼロショット学習と連続学習の一般化目標は密接に一致しているが、ゼロショット動作認識には連続学習の技法が適用されていない。
本稿では,ゼロショット動作認識のための連続学習に基づく新しい手法を提案する。
GILと呼ばれるこのモデルは、過去のクラスの合成特徴のメモリを使用し、これらの合成特徴を新しいクラスの実際の特徴と組み合わせる。
メモリは分類モデルをトレーニングするために使用され、古いクラスと新しいクラスの両方にバランスのとれた露出を確保する。
実験により、GILは未確認クラスの一般化を改善し、複数のベンチマークでゼロショット認識の新たな最先端を実現している。
重要なことは、モデルが微調整の前に見られるクラスに関する知識を保持する必要があるような、より難しい一般化されたゼロショット設定におけるパフォーマンスも向上することである。
関連論文リスト
- Enhancing Visual Continual Learning with Language-Guided Supervision [76.38481740848434]
継続的な学習は、モデルが以前獲得した知識を忘れずに新しいタスクを学習できるようにすることを目的としている。
ワンホットラベルが伝達する少ない意味情報は,タスク間の効果的な知識伝達を妨げている,と我々は主張する。
具体的には, PLM を用いて各クラスのセマンティックターゲットを生成し, 凍結し, 監視信号として機能する。
論文 参考訳(メタデータ) (2024-03-24T12:41:58Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
分散型特徴再現(LP-DiF)を用いた学習プロンプト(Learning Prompt)という,シンプルで効果的なフレームワークを提案する。
新しいセッションでは,学習可能なプロンプトが古い知識を忘れないようにするため,擬似機能的リプレイ手法を提案する。
新しいセッションに進むと、古いクラスのディストリビューションと現在のセッションのトレーニングイメージを組み合わせて擬似フィーチャーをサンプリングして、プロンプトを最適化する。
論文 参考訳(メタデータ) (2024-01-03T07:59:17Z) - Continual Zero-Shot Learning through Semantically Guided Generative
Random Walks [56.65465792750822]
生成モデルを利用して、学習中に見えない情報が提供されない連続ゼロショット学習の課題に対処する。
本稿では,新しい意味誘導型生成ランダムウォーク(GRW)損失を用いた学習アルゴリズムを提案する。
提案アルゴリズムは,AWA1,AWA2,CUB,SUNデータセットの最先端性能を達成し,既存のCZSL手法を3~7%上回る結果を得た。
論文 参考訳(メタデータ) (2023-08-23T18:10:12Z) - Class-Incremental Learning: A Survey [84.30083092434938]
CIL(Class-Incremental Learning)は、学習者が新しいクラスの知識を段階的に取り入れることを可能にする。
CILは、前者の特徴を壊滅的に忘れる傾向にあり、その性能は劇的に低下する。
ベンチマーク画像分類タスクにおける17の手法の厳密で統一的な評価を行い、異なるアルゴリズムの特徴を明らかにする。
論文 参考訳(メタデータ) (2023-02-07T17:59:05Z) - Template-based Approach to Zero-shot Intent Recognition [7.330908962006392]
本稿では、意図認識のための一般化されたゼロショット設定について検討する。
ゼロショットテキスト分類のベストプラクティスに従い、文ペアモデリングアプローチを用いてタスクを扱います。
未確認の意図に対して,従来のf1尺度を最大16%上回りました。
論文 参考訳(メタデータ) (2022-06-22T08:44:59Z) - Dynamic VAEs with Generative Replay for Continual Zero-shot Learning [1.90365714903665]
本稿では,タスクごとにサイズが拡大する新しいゼロショット学習(DVGR-CZSL)モデルを提案する。
ZSL(Zero-Shot Learning)を用いた逐次学習において,本手法が優れていることを示す。
論文 参考訳(メタデータ) (2021-04-26T10:56:43Z) - Incrementally Zero-Shot Detection by an Extreme Value Analyzer [0.0]
本稿では,実世界の物体検出におけるゼロショット学習とクラスインクリメンタル学習の両方のための新しい戦略を提案する。
本稿では,新しい極値解析器を提案し,古い見え方,新しい見え方,見えないクラスからオブジェクトを同時に検出する。
実験では, 対象物の検出におけるモデルの有効性を実証し, Pascal VOCおよびMSCOCOデータセット上での代替モデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-03-23T15:06:30Z) - Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot
Learning [82.07273754143547]
トレーニング中に見られないカテゴリにモデルを一般化するためのメタ連続ゼロショット学習(MCZSL)アプローチを提案する。
属性の自己決定とスケールしたクラス正規化をメタラーニングベースのトレーニングと組み合わせることで、最先端の成果を上回ることができるのです。
論文 参考訳(メタデータ) (2021-02-23T18:36:14Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
各インスタンスを個別に最適化するのではなく,すべてのトレーニングサンプルを同時に考慮したクラスタリングモデルを提案する。
提案手法をCLASTERと呼び,すべての標準データセットの最先端性を常に改善することを確認する。
論文 参考訳(メタデータ) (2021-01-18T12:46:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。