Continual Learning Improves Zero-Shot Action Recognition
- URL: http://arxiv.org/abs/2410.10497v1
- Date: Mon, 14 Oct 2024 13:42:44 GMT
- Title: Continual Learning Improves Zero-Shot Action Recognition
- Authors: Shreyank N Gowda, Davide Moltisanti, Laura Sevilla-Lara,
- Abstract summary: We propose a novel method based on continual learning to address zero-shot action recognition.
The memory is used to train a classification model, ensuring a balanced exposure to both old and new classes.
Experiments demonstrate that em GIL improves generalization in unseen classes, achieving a new state-of-the-art in zero-shot recognition.
- Score: 12.719578035745744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot action recognition requires a strong ability to generalize from pre-training and seen classes to novel unseen classes. Similarly, continual learning aims to develop models that can generalize effectively and learn new tasks without forgetting the ones previously learned. The generalization goals of zero-shot and continual learning are closely aligned, however techniques from continual learning have not been applied to zero-shot action recognition. In this paper, we propose a novel method based on continual learning to address zero-shot action recognition. This model, which we call {\em Generative Iterative Learning} (GIL) uses a memory of synthesized features of past classes, and combines these synthetic features with real ones from novel classes. The memory is used to train a classification model, ensuring a balanced exposure to both old and new classes. Experiments demonstrate that {\em GIL} improves generalization in unseen classes, achieving a new state-of-the-art in zero-shot recognition across multiple benchmarks. Importantly, {\em GIL} also boosts performance in the more challenging generalized zero-shot setting, where models need to retain knowledge about classes seen before fine-tuning.
Related papers
- Enhancing Visual Continual Learning with Language-Guided Supervision [76.38481740848434]
Continual learning aims to empower models to learn new tasks without forgetting previously acquired knowledge.
We argue that the scarce semantic information conveyed by the one-hot labels hampers the effective knowledge transfer across tasks.
Specifically, we use PLMs to generate semantic targets for each class, which are frozen and serve as supervision signals.
arXiv Detail & Related papers (2024-03-24T12:41:58Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
We propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF)
To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach.
When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt.
arXiv Detail & Related papers (2024-01-03T07:59:17Z) - Continual Zero-Shot Learning through Semantically Guided Generative
Random Walks [56.65465792750822]
We address the challenge of continual zero-shot learning where unseen information is not provided during training, by leveraging generative modeling.
We propose our learning algorithm that employs a novel semantically guided Generative Random Walk (GRW) loss.
Our algorithm achieves state-of-the-art performance on AWA1, AWA2, CUB, and SUN datasets, surpassing existing CZSL methods by 3-7%.
arXiv Detail & Related papers (2023-08-23T18:10:12Z) - Class-Incremental Learning: A Survey [84.30083092434938]
Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally.
CIL tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades.
We provide a rigorous and unified evaluation of 17 methods in benchmark image classification tasks to find out the characteristics of different algorithms.
arXiv Detail & Related papers (2023-02-07T17:59:05Z) - Template-based Approach to Zero-shot Intent Recognition [7.330908962006392]
In this paper, we explore the generalized zero-shot setup for intent recognition.
Following best practices for zero-shot text classification, we treat the task with a sentence pair modeling approach.
We outperform previous state-of-the-art f1-measure by up to 16% for unseen intents.
arXiv Detail & Related papers (2022-06-22T08:44:59Z) - Dynamic VAEs with Generative Replay for Continual Zero-shot Learning [1.90365714903665]
This paper proposes a novel continual zero-shot learning (DVGR-CZSL) model that grows in size with each task and uses generative replay to update itself with previously learned classes to avoid forgetting.
We show our method is superior in task sequentially learning with ZSL(Zero-Shot Learning)
arXiv Detail & Related papers (2021-04-26T10:56:43Z) - Incrementally Zero-Shot Detection by an Extreme Value Analyzer [0.0]
This paper introduces a novel strategy for both zero-shot learning and class-incremental learning in real-world object detection.
We propose a novel extreme value analyzer to detect objects from old seen, new seen, and unseen classes, simultaneously.
Experiments demonstrate the efficacy of our model in detecting objects from both the seen and unseen classes, outperforming the alternative models on Pascal VOC and MSCOCO datasets.
arXiv Detail & Related papers (2021-03-23T15:06:30Z) - Meta-Learned Attribute Self-Gating for Continual Generalized Zero-Shot
Learning [82.07273754143547]
We propose a meta-continual zero-shot learning (MCZSL) approach to generalizing a model to categories unseen during training.
By pairing self-gating of attributes and scaled class normalization with meta-learning based training, we are able to outperform state-of-the-art results.
arXiv Detail & Related papers (2021-02-23T18:36:14Z) - CLASTER: Clustering with Reinforcement Learning for Zero-Shot Action
Recognition [52.66360172784038]
We propose a clustering-based model, which considers all training samples at once, instead of optimizing for each instance individually.
We call the proposed method CLASTER and observe that it consistently improves over the state-of-the-art in all standard datasets.
arXiv Detail & Related papers (2021-01-18T12:46:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.