Reproducible Machine Learning-based Voice Pathology Detection: Introducing the Pitch Difference Feature
- URL: http://arxiv.org/abs/2410.10537v1
- Date: Mon, 14 Oct 2024 14:17:52 GMT
- Title: Reproducible Machine Learning-based Voice Pathology Detection: Introducing the Pitch Difference Feature
- Authors: Jan Vrba, Jakub Steinbach, Tomáš Jirsa, Laura Verde, Roberta De Fazio, Noriyasu Homma, Yuwen Zeng, Key Ichiji, Lukáš Hájek, Zuzana Sedláková, Jan Mareš,
- Abstract summary: We propose a robust set of features derived from a thorough research of contemporary practices in voice pathology detection.
We combine this feature set, containing data from the publicly available Saarbr"ucken Voice Database (SVD), with preprocessing using the K-Means Synthetic Minority Over-Sampling Technique algorithm.
Our approach has achieved the state-of-the-art performance, measured by unweighted average recall in voice pathology detection.
- Score: 1.1455937444848385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we propose a robust set of features derived from a thorough research of contemporary practices in voice pathology detection. The feature set is based on the combination of acoustic handcrafted features. Additionally, we introduce pitch difference as a novel feature. We combine this feature set, containing data from the publicly available Saarbr\"ucken Voice Database (SVD), with preprocessing using the K-Means Synthetic Minority Over-Sampling Technique algorithm to address class imbalance. Moreover, we applied multiple ML models as binary classifiers. We utilized support vector machine, k-nearest neighbors, naive Bayes, decision tree, random forest and AdaBoost classifiers. To determine the best classification approach, we performed grid search on feasible hyperparameters of respective classifiers and subsections of features. Our approach has achieved the state-of-the-art performance, measured by unweighted average recall in voice pathology detection on SVD database. We intentionally omit accuracy as it is highly biased metric in case of unbalanced data compared to aforementioned metrics. The results are further enhanced by eliminating the potential overestimation of the results with repeated stratified cross-validation. This advancement demonstrates significant potential for the clinical deployment of ML methods, offering a valuable tool for an objective examination of voice pathologies. To support our claims, we provide a publicly available GitHub repository with DOI 10.5281/zenodo.13771573. Finally, we provide REFORMS checklist.
Related papers
- Robust Learning under Hybrid Noise [24.36707245704713]
We propose a novel unified learning framework called "Feature and Label Recovery" (FLR) to combat the hybrid noise from the perspective of data recovery.
arXiv Detail & Related papers (2024-07-04T16:13:25Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Ontology-aware Learning and Evaluation for Audio Tagging [56.59107110017436]
Mean average precision (mAP) metric treats different kinds of sound as independent classes without considering their relations.
Ontology-aware mean average precision (OmAP) addresses the weaknesses of mAP by utilizing the AudioSet ontology information during the evaluation.
We conduct human evaluations and demonstrate that OmAP is more consistent with human perception than mAP.
arXiv Detail & Related papers (2022-11-22T11:35:14Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
meta-learner is prone to overfitting since there are only a few available samples.
When handling the data with noisy labels, the meta-learner could be extremely sensitive to label noise.
We present Eigen-Reptile (ER) that updates the meta- parameters with the main direction of historical task-specific parameters.
arXiv Detail & Related papers (2022-06-04T08:48:02Z) - Missing Data Imputation and Acquisition with Deep Hierarchical Models
and Hamiltonian Monte Carlo [2.666288135543677]
We present HH-VAEM, a Hierarchical VAE model for mixed-type incomplete data.
Our experiments show that HH-VAEM outperforms existing baselines in the tasks of missing data imputation, supervised learning and outlier identification.
We also present a sampling-based approach for efficiently computing the information gain when missing features are to be acquired with HH-VAEM.
arXiv Detail & Related papers (2022-02-09T17:50:52Z) - Uncertainty quantification for multiclass data description [0.1611401281366893]
We propose a multiclass data description model based on kernel Mahalanobis distance (MDD-KM)
We report a prototypical classification system based on a hierarchical linear dynamical system with MDD-KM as a component.
arXiv Detail & Related papers (2021-08-29T14:42:04Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Towards Better Object Detection in Scale Variation with Adaptive Feature
Selection [3.5352273012717044]
We propose a novel adaptive feature selection module (AFSM) to automatically learn the way to fuse multi-level representations in the channel dimension.
It significantly improves the performance of the detectors that have a feature pyramid structure.
A class-aware sampling mechanism (CASM) is proposed to tackle the class imbalance problem.
arXiv Detail & Related papers (2020-12-06T13:41:20Z) - Optimizing Speech Emotion Recognition using Manta-Ray Based Feature
Selection [1.4502611532302039]
We show that concatenation of features, extracted by using different existing feature extraction methods can boost the classification accuracy.
We also perform a novel application of Manta Ray optimization in speech emotion recognition tasks that resulted in a state-of-the-art result.
arXiv Detail & Related papers (2020-09-18T16:09:34Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.