Tübingen-CL at SemEval-2024 Task 1:Ensemble Learning for Semantic Relatedness Estimation
- URL: http://arxiv.org/abs/2410.10585v1
- Date: Mon, 14 Oct 2024 14:56:51 GMT
- Title: Tübingen-CL at SemEval-2024 Task 1:Ensemble Learning for Semantic Relatedness Estimation
- Authors: Leixin Zhang, Çağrı Çöltekin,
- Abstract summary: The paper introduces our system for SemEval-2024 Task 1, which aims to predict the relatedness of sentence pairs.
We employ an ensemble approach integrating various systems, including statistical textual features and outputs of deep learning models to predict relatedness scores.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper introduces our system for SemEval-2024 Task 1, which aims to predict the relatedness of sentence pairs. Operating under the hypothesis that semantic relatedness is a broader concept that extends beyond mere similarity of sentences, our approach seeks to identify useful features for relatedness estimation. We employ an ensemble approach integrating various systems, including statistical textual features and outputs of deep learning models to predict relatedness scores. The findings suggest that semantic relatedness can be inferred from various sources and ensemble models outperform many individual systems in estimating semantic relatedness.
Related papers
- Unifying Feature and Cost Aggregation with Transformers for Semantic and Visual Correspondence [51.54175067684008]
This paper introduces a Transformer-based integrative feature and cost aggregation network designed for dense matching tasks.
We first show that feature aggregation and cost aggregation exhibit distinct characteristics and reveal the potential for substantial benefits stemming from the judicious use of both aggregation processes.
Our framework is evaluated on standard benchmarks for semantic matching, and also applied to geometric matching, where we show that our approach achieves significant improvements compared to existing methods.
arXiv Detail & Related papers (2024-03-17T07:02:55Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
We discuss the key related theoretical aspects, with a particular focus on the fairness properties of primal optima and associated risk allocations.
The algorithms we provide allow for learning primals, optima for the dual representation and corresponding fair risk allocations.
arXiv Detail & Related papers (2023-02-02T22:16:49Z) - Relational Sentence Embedding for Flexible Semantic Matching [86.21393054423355]
We present Sentence Embedding (RSE), a new paradigm to discover further the potential of sentence embeddings.
RSE is effective and flexible in modeling sentence relations and outperforms a series of state-of-the-art embedding methods.
arXiv Detail & Related papers (2022-12-17T05:25:17Z) - Pre-trained Sentence Embeddings for Implicit Discourse Relation
Classification [26.973476248983477]
Implicit discourse relations bind smaller linguistic units into coherent texts.
We explore the utility of pre-trained sentence embeddings as base representations in a neural network for implicit discourse relation sense classification.
arXiv Detail & Related papers (2022-10-20T04:17:03Z) - Inherent Inconsistencies of Feature Importance [6.02357145653815]
Feature importance is a method that assigns scores to the contribution of individual features on prediction outcomes.
This paper presents an axiomatic framework designed to establish coherent relationships among the different contexts of feature importance scores.
arXiv Detail & Related papers (2022-06-16T14:21:51Z) - What Makes Sentences Semantically Related: A Textual Relatedness Dataset
and Empirical Study [31.062129406113588]
We introduce a dataset for Semantic Textual Relatedness, STR-2022, that has 5,500 English sentence pairs manually annotated.
We show that human intuition regarding relatedness of sentence pairs is highly reliable, with a repeat annotation correlation of 0.84.
We also show the utility of STR-2022 for evaluating automatic methods of sentence representation and for various downstream NLP tasks.
arXiv Detail & Related papers (2021-10-10T16:23:54Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Learning with Instance Bundles for Reading Comprehension [61.823444215188296]
We introduce new supervision techniques that compare question-answer scores across multiple related instances.
Specifically, we normalize these scores across various neighborhoods of closely contrasting questions and/or answers.
We empirically demonstrate the effectiveness of training with instance bundles on two datasets.
arXiv Detail & Related papers (2021-04-18T06:17:54Z) - Combining Task Predictors via Enhancing Joint Predictability [53.46348489300652]
We present a new predictor combination algorithm that improves the target by i) measuring the relevance of references based on their capabilities in predicting the target, and ii) strengthening such estimated relevance.
Our algorithm jointly assesses the relevance of all references by adopting a Bayesian framework.
Based on experiments on seven real-world datasets from visual attribute ranking and multi-class classification scenarios, we demonstrate that our algorithm offers a significant performance gain and broadens the application range of existing predictor combination approaches.
arXiv Detail & Related papers (2020-07-15T21:58:39Z) - Exploiting Non-Taxonomic Relations for Measuring Semantic Similarity and
Relatedness in WordNet [0.0]
This paper explores the benefits of using all types of non-taxonomic relations in large linked data, such as WordNet knowledge graph.
We propose a holistic poly-relational approach based on a new relation-based information content and non-taxonomic-based weighted paths.
arXiv Detail & Related papers (2020-06-22T09:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.