論文の概要: TRESTLE: A Model of Concept Formation in Structured Domains
- arxiv url: http://arxiv.org/abs/2410.10588v1
- Date: Mon, 14 Oct 2024 15:00:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 20:45:18.295013
- Title: TRESTLE: A Model of Concept Formation in Structured Domains
- Title(参考訳): TRESTLE: 構造化ドメインの概念形成モデル
- Authors: Christopher J. MacLellan, Erik Harpstead, Vincent Aleven, Kenneth R. Koedinger,
- Abstract要約: 本稿では、構造化ドメインにおける確率論的概念形成の漸進的な説明であるTRESTLEを提案する。
教師なし学習タスクと教師なしクラスタリングタスクにおいて,TRESTLEの性能を評価する。
- 参考スコア(独自算出の注目度): 4.399333421690168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The literature on concept formation has demonstrated that humans are capable of learning concepts incrementally, with a variety of attribute types, and in both supervised and unsupervised settings. Many models of concept formation focus on a subset of these characteristics, but none account for all of them. In this paper, we present TRESTLE, an incremental account of probabilistic concept formation in structured domains that unifies prior concept learning models. TRESTLE works by creating a hierarchical categorization tree that can be used to predict missing attribute values and cluster sets of examples into conceptually meaningful groups. It updates its knowledge by partially matching novel structures and sorting them into its categorization tree. Finally, the system supports mixed-data representations, including nominal, numeric, relational, and component attributes. We evaluate TRESTLE's performance on a supervised learning task and an unsupervised clustering task. For both tasks, we compare it to a nonincremental model and to human participants. We find that this new categorization model is competitive with the nonincremental approach and more closely approximates human behavior on both tasks. These results serve as an initial demonstration of TRESTLE's capabilities and show that, by taking key characteristics of human learning into account, it can better model behavior than approaches that ignore them.
- Abstract(参考訳): 概念形成に関する文献は、人間が様々な属性タイプ、教師なしと教師なしの両方で、概念を漸進的に学習できることを実証している。
概念形成のモデルの多くはこれらの特徴のサブセットに焦点を当てているが、それら全てを考慮していない。
本稿では,従来の概念学習モデルを統一した構造化ドメインにおける確率論的概念形成の漸進的な説明であるTRESTLEを提案する。
TRESTLEは、欠落した属性値とサンプルのクラスタセットを概念的に意味のあるグループに予測するために使用できる階層的な分類木を作成することで機能する。
知識を部分的に一致させ、それらを分類木に分類することで更新する。
最後に、このシステムは、名目、数値、リレーショナル、コンポーネント属性を含む混合データ表現をサポートする。
教師なし学習タスクと教師なしクラスタリングタスクにおいて,TRESTLEの性能を評価する。
両方のタスクに対して、非インクリメンタルモデルと人間の参加者を比較します。
この新たな分類モデルは、非増分的アプローチと競合し、より密に両方のタスクにおける人間の振る舞いを近似する。
これらの結果は、TRESTLEの機能の最初のデモとして機能し、人間の学習の重要な特徴を考慮に入れれば、それを無視するアプローチよりも、振る舞いをモデル化できることを示す。
関連論文リスト
- A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Inspecting class hierarchies in classification-based metric learning
models [0.0]
我々は、ベンチマークと実世界のデータセット上で、いくつかのトレーニングオプションを備えたソフトマックス分類器と3つのメトリック学習モデルを訓練する。
我々は,学習したクラスの代表者や階層的インフォームドのパフォーマンス,すなわち分類性能とメートル法学習性能を事前に定義された階層構造を考慮し,階層的推論性能を評価する。
論文 参考訳(メタデータ) (2023-01-26T12:40:12Z) - Neural Representations Reveal Distinct Modes of Class Fitting in
Residual Convolutional Networks [5.1271832547387115]
ニューラル表現の確率モデルを利用して、残余ネットワークがクラスにどのように適合するかを調べる。
調査対象モデルのクラスは均一に適合していないことがわかった。
神経表現の未発見構造は, トレーニング例の堅牢性と, 対向記憶の相関性を示す。
論文 参考訳(メタデータ) (2022-12-01T18:55:58Z) - On the Compositional Generalization Gap of In-Context Learning [73.09193595292233]
In-distriion (ID) と Out-of-distriion (OOD) の相違について考察する。
我々は,3つの意味解析データセットを用いて,OPT,BLOOM,CodeGen,Codexの4つのモデルファミリを評価する。
論文 参考訳(メタデータ) (2022-11-15T19:56:37Z) - A Top-down Supervised Learning Approach to Hierarchical Multi-label
Classification in Networks [0.21485350418225244]
本稿では,階層型マルチラベル分類(HMC)に対する一般的な予測モデルを提案する。
クラスごとの局所分類器を構築することで教師あり学習により階層的マルチラベル分類に対処するトップダウン分類アプローチに基づいている。
本モデルでは, イネOryza sativa Japonicaの遺伝子機能の予測について事例研究を行った。
論文 参考訳(メタデータ) (2022-03-23T17:29:17Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
一般合成ゼロショット学習は、ゼロショット方式で属性オブジェクト対の合成概念を学習する手段である。
本稿では,これら2つの課題を統一的なフレームワークで解決するために,翻訳概念の埋め込み(translational concept embedded)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-20T21:27:51Z) - GAN for Vision, KG for Relation: a Two-stage Deep Network for Zero-shot
Action Recognition [33.23662792742078]
ゼロショット動作認識のための2段階のディープニューラルネットワークを提案する。
サンプリング段階では,授業の動作特徴と単語ベクトルによって訓練されたGAN(Generative Adversarial Network)を利用する。
分類段階において、アクションクラスの単語ベクトルと関連するオブジェクトの関係に基づいて知識グラフを構築する。
論文 参考訳(メタデータ) (2021-05-25T09:34:42Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
我々は,機械が一般化可能な概念を学習する能力を調べるため,新しいデータセットであるHINT(Hand written arithmetic with INTegers)を提案する。
HINTでは、イメージなどの生信号から概念がどのように認識されるかを学ぶことが機械のタスクである。
我々は、RNN、Transformer、GPT-3など、様々なシーケンス・ツー・シーケンスモデルで広範囲に実験を行った。
論文 参考訳(メタデータ) (2021-03-02T01:32:54Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。