論文の概要: AFlow: Automating Agentic Workflow Generation
- arxiv url: http://arxiv.org/abs/2410.10762v2
- Date: Tue, 25 Feb 2025 04:56:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:20:27.002317
- Title: AFlow: Automating Agentic Workflow Generation
- Title(参考訳): AFlow: エージェントワークフロー生成を自動化する
- Authors: Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, Chenglin Wu,
- Abstract要約: 大規模言語モデル(LLM)は、様々な領域にわたる複雑なタスクを解く上で、顕著な可能性を示している。
我々は、Monte Carlo Tree Searchを使って、この空間を効率的に探索する自動化フレームワークであるAFlowを紹介します。
6つのベンチマークデータセットに対する実証的な評価は、AFlowの有効性を示し、最先端のベースラインよりも平均5.7%向上している。
- 参考スコア(独自算出の注目度): 36.61172223528231
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable potential in solving complex tasks across diverse domains, typically by employing agentic workflows that follow detailed instructions and operational sequences. However, constructing these workflows requires significant human effort, limiting scalability and generalizability. Recent research has sought to automate the generation and optimization of these workflows, but existing methods still rely on initial manual setup and fall short of achieving fully automated and effective workflow generation. To address this challenge, we reformulate workflow optimization as a search problem over code-represented workflows, where LLM-invoking nodes are connected by edges. We introduce AFlow, an automated framework that efficiently explores this space using Monte Carlo Tree Search, iteratively refining workflows through code modification, tree-structured experience, and execution feedback. Empirical evaluations across six benchmark datasets demonstrate AFlow's efficacy, yielding a 5.7% average improvement over state-of-the-art baselines. Furthermore, AFlow enables smaller models to outperform GPT-4o on specific tasks at 4.55% of its inference cost in dollars. The code will be available at https://github.com/geekan/MetaGPT.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域にわたる複雑なタスクの解決において、典型的には詳細な命令と操作シーケンスに従うエージェントワークフローを使用することで、顕著な可能性を証明している。
しかしながら、これらのワークフローを構築するには、スケーラビリティと一般化性を制限する、多大な人的努力が必要である。
最近の研究はこれらのワークフローの生成と最適化を自動化しようとしたが、既存の手法はまだ手作業によるセットアップに依存しており、完全な自動化と効果的なワークフロー生成を実現するには至っていない。
この課題に対処するため、LLM呼び出しノードをエッジで接続するコード表現ワークフロー上での探索問題としてワークフロー最適化を再構成する。
我々は、Monte Carlo Tree Searchを使ってこの空間を効率的に探索する自動化フレームワークであるAFlowを紹介します。
6つのベンチマークデータセットに対する実証的な評価は、AFlowの有効性を示し、最先端のベースラインよりも平均5.7%向上している。
さらに、AFlowはより小さなモデルで、推論コストの4.55%のコストで、特定のタスクでGPT-4oを上回ります。
コードはhttps://github.com/geekan/MetaGPTで入手できる。
関連論文リスト
- Cognify: Supercharging Gen-AI Workflows With Hierarchical Autotuning [6.328780056857816]
複数のMLモデルコール、ツール/APIコール、データ検索、ジェネリックコード実行を含むgen-AIは、しばしばアドホックな方法で手動でチューニングされる。
AdaSeekは、ユーザが指定した全検索予算に基づいて、ワークフローチューニング方法を異なるレイヤに整理する。
Cognifyはワークフローの生成品質を最大2.8倍に改善し、実行費用を最大10倍に削減し、エンドツーエンドのレイテンシを2.7倍に削減する。
論文 参考訳(メタデータ) (2025-02-12T01:36:27Z) - ScoreFlow: Mastering LLM Agent Workflows via Score-based Preference Optimization [51.280919773837645]
エージェントワークフロー最適化のための高性能フレームワークであるScoreFlowを開発した。
ScoreFlowは、量的フィードバックを考慮に入れた直接選好最適化手法の新たな変種であるScore-DPOを組み込んでいる。
質問応答、コーディング、数学的推論を通じて、既存のベースラインよりも8.2%改善されている。
論文 参考訳(メタデータ) (2025-02-06T18:47:49Z) - Flow: A Modular Approach to Automated Agentic Workflow Generation [53.073598156915615]
大規模言語モデル(LLM)を利用したマルチエージェントフレームワークは、自動計画とタスク実行において大きな成功を収めている。
しかし,実行中のエージェントの効果的な調整は十分に研究されていない。
論文 参考訳(メタデータ) (2025-01-14T04:35:37Z) - Opus: A Large Work Model for Complex Workflow Generation [0.0]
Opusは、複雑なビジネスプロセスアウトソーシング(BPO)ユースケースに適したタスクの生成と最適化のためのフレームワークである。
このアプローチでは、クライアント入力、クライアント出力、プロセス指向コンテキストのアライメントとして定義されたインテンションから実行ファイルを生成します。
論文 参考訳(メタデータ) (2024-11-30T20:00:41Z) - FlowTS: Time Series Generation via Rectified Flow [67.41208519939626]
FlowTSは、確率空間における直線輸送を伴う整流フローを利用するODEベースのモデルである。
非条件設定では、FlowTSは最先端のパフォーマンスを達成し、コンテキストFIDスコアはStockとETThデータセットで0.019と0.011である。
条件設定では、太陽予測において優れた性能を達成している。
論文 参考訳(メタデータ) (2024-11-12T03:03:23Z) - WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models [105.46456444315693]
ワークフローオーケストレーションにおける大規模言語モデルの能力を高めるための,データ中心のフレームワークであるLLMを提案する。
最初は106,763のサンプルで大規模な微調整Benchを構築し、28のカテゴリにわたる83のアプリケーションから1,503のAPIをカバーしている。
LlamaLlamaは複雑なAPIをオーケストレーションする能力を示しながら、優れた一般化性能を実現している。
論文 参考訳(メタデータ) (2024-11-08T09:58:02Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
複数面シナリオと複雑なグラフワークフロー構造を備えた統合ワークフロー生成ベンチマークであるWorFBenchを紹介する。
また,サブシーケンスとサブグラフマッチングアルゴリズムを利用したシステム評価プロトコルWorFEvalを提案する。
我々は、生成されたタスクが下流のタスクを強化し、推論中により少ない時間で優れたパフォーマンスを達成することができることを観察する。
論文 参考訳(メタデータ) (2024-10-10T12:41:19Z) - AutoFlow: Automated Workflow Generation for Large Language Model Agents [39.72700864347576]
大規模言語モデル(LLM)は、複雑な自然言語を理解する上で大きな進歩を見せている。
LLMエージェントが与えられたタスクを解決するための効果的で信頼性の高い手順に従うようにするために、手動で設計されるのが通常である。
複雑なタスクを解決するためにエージェントを自動的に生成するフレームワークであるAutoFlowを提案する。
論文 参考訳(メタデータ) (2024-07-01T21:05:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。