Hard-Constrained Neural Networks with Universal Approximation Guarantees
- URL: http://arxiv.org/abs/2410.10807v1
- Date: Mon, 14 Oct 2024 17:59:24 GMT
- Title: Hard-Constrained Neural Networks with Universal Approximation Guarantees
- Authors: Youngjae Min, Anoopkumar Sonar, Navid Azizan,
- Abstract summary: HardNet is a framework for constructing neural networks that inherently satisfy hard constraints without sacrificing model capacity.
We show that HardNet retains the universal approximation capabilities of neural networks.
- Score: 5.3663546125491735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporating prior knowledge or specifications of input-output relationships into machine learning models has gained significant attention, as it enhances generalization from limited data and leads to conforming outputs. However, most existing approaches use soft constraints by penalizing violations through regularization, which offers no guarantee of constraint satisfaction -- an essential requirement in safety-critical applications. On the other hand, imposing hard constraints on neural networks may hinder their representational power, adversely affecting performance. To address this, we propose HardNet, a practical framework for constructing neural networks that inherently satisfy hard constraints without sacrificing model capacity. Specifically, we encode affine and convex hard constraints, dependent on both inputs and outputs, by appending a differentiable projection layer to the network's output. This architecture allows unconstrained optimization of the network parameters using standard algorithms while ensuring constraint satisfaction by construction. Furthermore, we show that HardNet retains the universal approximation capabilities of neural networks. We demonstrate the versatility and effectiveness of HardNet across various applications: fitting functions under constraints, learning optimization solvers, optimizing control policies in safety-critical systems, and learning safe decision logic for aircraft systems.
Related papers
- Learning to Solve Combinatorial Optimization under Positive Linear Constraints via Non-Autoregressive Neural Networks [103.78912399195005]
Combinatorial optimization (CO) is the fundamental problem at the intersection of computer science, applied mathematics, etc.
In this paper, we design a family of non-autoregressive neural networks to solve CO problems under positive linear constraints.
We validate the effectiveness of this framework in solving representative CO problems including facility location, max-set covering, and traveling salesman problem.
arXiv Detail & Related papers (2024-09-06T14:58:31Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
Regularizing Deep Neural Networks (DNNs) is essential for improving generalizability and preventing overfitting.
We propose a novel approach to DNN regularization by framing the training process as a constrained optimization problem.
We employ the Augmented Lagrangian (SAL) method to achieve a more flexible and efficient regularization mechanism.
arXiv Detail & Related papers (2023-10-25T13:55:35Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
We develop a series of approaches for enforcing hard constraints on neural fields.
The constraints can be specified as a linear operator applied to the neural field and its derivatives.
Our approaches are demonstrated in a wide range of real-world applications.
arXiv Detail & Related papers (2023-06-15T08:33:52Z) - Power Control with QoS Guarantees: A Differentiable Projection-based
Unsupervised Learning Framework [14.518558523319518]
Deep neural networks (DNNs) are emerging as a potential solution to solve NP-hard wireless resource allocation problems.
We propose a novel unsupervised learning framework to solve the classical power control problem in a multi-user channel.
We show that the proposed solutions not only improve the data rate but also achieve zero constraint violation probability, compared to the existing computations.
arXiv Detail & Related papers (2023-05-31T14:11:51Z) - DeepSaDe: Learning Neural Networks that Guarantee Domain Constraint
Satisfaction [8.29487992932196]
We present an approach to train neural networks which can enforce a wide variety of constraints and guarantee that the constraint is satisfied by all possible predictions.
Our approach is flexible enough to enforce a wide variety of domain constraints and is able to guarantee them in neural networks.
arXiv Detail & Related papers (2023-03-02T10:40:50Z) - Constrained Empirical Risk Minimization: Theory and Practice [2.4934936799100034]
We present a framework that allows the exact enforcement of constraints on parameterized sets of functions such as Deep Neural Networks (DNNs)
We focus on constraints that are outside the scope of equivariant networks used in Geometric Deep Learning.
As a major example of the framework, we restrict filters of a Convolutional Neural Network (CNN) to be wavelets, and apply these wavelet networks to the task of contour prediction in the medical domain.
arXiv Detail & Related papers (2023-02-09T16:11:58Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Risk-Awareness in Learning Neural Controllers for Temporal Logic
Objectives [2.047329787828792]
We consider the problem of a controller in the presence of uncertainty such that the resulting closed-loop system satisfies certain hard constraints.
We utilize the framework of control barrier functions (CBFs) and algorithmically obtain CBFs for STL objectives.
We demonstrate the efficacy of our approach on well-known difficult examples for nonlinear control such as a quad-rotor and a unicycle.
arXiv Detail & Related papers (2022-10-14T00:49:08Z) - Edge Rewiring Goes Neural: Boosting Network Resilience via Policy
Gradient [62.660451283548724]
ResiNet is a reinforcement learning framework to discover resilient network topologies against various disasters and attacks.
We show that ResiNet achieves a near-optimal resilience gain on multiple graphs while balancing the utility, with a large margin compared to existing approaches.
arXiv Detail & Related papers (2021-10-18T06:14:28Z) - An Integer Linear Programming Framework for Mining Constraints from Data [81.60135973848125]
We present a general framework for mining constraints from data.
In particular, we consider the inference in structured output prediction as an integer linear programming (ILP) problem.
We show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules.
arXiv Detail & Related papers (2020-06-18T20:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.