LongMemEval: Benchmarking Chat Assistants on Long-Term Interactive Memory
- URL: http://arxiv.org/abs/2410.10813v1
- Date: Mon, 14 Oct 2024 17:59:44 GMT
- Title: LongMemEval: Benchmarking Chat Assistants on Long-Term Interactive Memory
- Authors: Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, Dong Yu,
- Abstract summary: This paper introduces LongMemEval, a benchmark designed to evaluate five core long-term memory abilities of chat assistants.
LongMemEval presents a significant challenge to existing long-term memory systems.
We present a unified framework that breaks down the long-term memory design into four design choices.
- Score: 68.97819665784442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent large language model (LLM)-driven chat assistant systems have integrated memory components to track user-assistant chat histories, enabling more accurate and personalized responses. However, their long-term memory capabilities in sustained interactions remain underexplored. This paper introduces LongMemEval, a comprehensive benchmark designed to evaluate five core long-term memory abilities of chat assistants: information extraction, multi-session reasoning, temporal reasoning, knowledge updates, and abstention. With 500 meticulously curated questions embedded within freely scalable user-assistant chat histories, LongMemEval presents a significant challenge to existing long-term memory systems, with commercial chat assistants and long-context LLMs showing 30% accuracy drop on memorizing information across sustained interactions. We then present a unified framework that breaks down the long-term memory design into four design choices across the indexing, retrieval, and reading stages. Built upon key experimental insights, we propose several memory designs including session decomposition for optimizing value granularity, fact-augmented key expansion for enhancing the index structure, and time-aware query expansion for refining the search scope. Experiment results show that these optimizations greatly improve both memory recall and downstream question answering on LongMemEval. Overall, our study provides valuable resources and guidance for advancing the long-term memory capabilities of LLM-based chat assistants, paving the way toward more personalized and reliable conversational AI.
Related papers
- Evaluating Very Long-Term Conversational Memory of LLM Agents [95.84027826745609]
We introduce a machine-human pipeline to generate high-quality, very long-term dialogues.
We equip each agent with the capability of sharing and reacting to images.
The generated conversations are verified and edited by human annotators for long-range consistency.
arXiv Detail & Related papers (2024-02-27T18:42:31Z) - Recursively Summarizing Enables Long-Term Dialogue Memory in Large
Language Models [75.98775135321355]
Given a long conversation, large language models (LLMs) fail to recall past information and tend to generate inconsistent responses.
We propose to generate summaries/ memory using large language models (LLMs) to enhance long-term memory ability.
arXiv Detail & Related papers (2023-08-29T04:59:53Z) - Augmenting Language Models with Long-Term Memory [142.04940250657637]
Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit.
We propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history.
arXiv Detail & Related papers (2023-06-12T15:13:39Z) - Keep Me Updated! Memory Management in Long-term Conversations [14.587940208778843]
We present a novel task and a dataset of memory management in long-term conversations.
We propose a new mechanism of memory management that eliminates invalidated or redundant information.
Experimental results show that our approach outperforms the baselines in terms of engagingness and humanness.
arXiv Detail & Related papers (2022-10-17T05:06:38Z) - Learning to Rehearse in Long Sequence Memorization [107.14601197043308]
Existing reasoning tasks often have an important assumption that the input contents can be always accessed while reasoning.
Memory augmented neural networks introduce a human-like write-read memory to compress and memorize the long input sequence in one pass.
But they have two serious drawbacks: 1) they continually update the memory from current information and inevitably forget the early contents; 2) they do not distinguish what information is important and treat all contents equally.
We propose the Rehearsal Memory to enhance long-sequence memorization by self-supervised rehearsal with a history sampler.
arXiv Detail & Related papers (2021-06-02T11:58:30Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
We propose a temporal gating methodology to improve attention mechanism and recurrent units.
We also propose a Multi-hop Time-aware Attentive Memory network to integrate long-term and short-term preferences.
Our approach is scalable for candidate retrieval tasks and can be viewed as a non-linear generalization of latent factorization for dot-product based Top-K recommendation.
arXiv Detail & Related papers (2020-05-18T11:29:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.