InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions
- URL: http://arxiv.org/abs/2412.09596v1
- Date: Thu, 12 Dec 2024 18:58:30 GMT
- Title: InternLM-XComposer2.5-OmniLive: A Comprehensive Multimodal System for Long-term Streaming Video and Audio Interactions
- Authors: Pan Zhang, Xiaoyi Dong, Yuhang Cao, Yuhang Zang, Rui Qian, Xilin Wei, Lin Chen, Yifei Li, Junbo Niu, Shuangrui Ding, Qipeng Guo, Haodong Duan, Xin Chen, Han Lv, Zheng Nie, Min Zhang, Bin Wang, Wenwei Zhang, Xinyue Zhang, Jiaye Ge, Wei Li, Jingwen Li, Zhongying Tu, Conghui He, Xingcheng Zhang, Kai Chen, Yu Qiao, Dahua Lin, Jiaqi Wang,
- Abstract summary: This project introduces disentangled streaming perception, reasoning, and memory mechanisms, enabling real-time interaction with streaming video and audio input.
This project simulates human-like cognition, enabling multimodal large language models to provide continuous and adaptive service over time.
- Score: 104.90258030688256
- License:
- Abstract: Creating AI systems that can interact with environments over long periods, similar to human cognition, has been a longstanding research goal. Recent advancements in multimodal large language models (MLLMs) have made significant strides in open-world understanding. However, the challenge of continuous and simultaneous streaming perception, memory, and reasoning remains largely unexplored. Current MLLMs are constrained by their sequence-to-sequence architecture, which limits their ability to process inputs and generate responses simultaneously, akin to being unable to think while perceiving. Furthermore, relying on long contexts to store historical data is impractical for long-term interactions, as retaining all information becomes costly and inefficient. Therefore, rather than relying on a single foundation model to perform all functions, this project draws inspiration from the concept of the Specialized Generalist AI and introduces disentangled streaming perception, reasoning, and memory mechanisms, enabling real-time interaction with streaming video and audio input. The proposed framework InternLM-XComposer2.5-OmniLive (IXC2.5-OL) consists of three key modules: (1) Streaming Perception Module: Processes multimodal information in real-time, storing key details in memory and triggering reasoning in response to user queries. (2) Multi-modal Long Memory Module: Integrates short-term and long-term memory, compressing short-term memories into long-term ones for efficient retrieval and improved accuracy. (3) Reasoning Module: Responds to queries and executes reasoning tasks, coordinating with the perception and memory modules. This project simulates human-like cognition, enabling multimodal large language models to provide continuous and adaptive service over time.
Related papers
- Temporal Working Memory: Query-Guided Segment Refinement for Enhanced Multimodal Understanding [28.635761403266496]
We introduce a specialized cognitive module, temporal working memory (TWM), which aims to enhance the temporal modeling capabilities of MFMs.
TWM selectively retains task-relevant information across temporal dimensions, ensuring that critical details are preserved throughout the processing of video and audio content.
With our TWM, nine state-of-the-art models exhibit significant performance improvements across tasks such as video captioning, question answering, and video-text retrieval.
arXiv Detail & Related papers (2025-02-09T20:26:30Z) - Multi-granularity Contrastive Cross-modal Collaborative Generation for End-to-End Long-term Video Question Answering [53.39158264785098]
Long-term Video Question Answering (VideoQA) is a challenging vision-and-language bridging task.
We present an entirely end-to-end solution for VideoQA: Multi-granularity Contrastive cross-modal collaborative Generation model.
arXiv Detail & Related papers (2024-10-12T06:21:58Z) - The Compressor-Retriever Architecture for Language Model OS [20.56093501980724]
This paper explores the concept of using a language model as the core component of an operating system (OS)
A key challenge in realizing such an LM OS is managing the life-long context and ensuring statefulness across sessions.
We introduce compressor-retriever, a model-agnostic architecture designed for life-long context management.
arXiv Detail & Related papers (2024-09-02T23:28:15Z) - HERMES: temporal-coHERent long-forM understanding with Episodes and Semantics [32.117677036812836]
HERMES is a model that simulates episodic memory accumulation to capture action sequences.
Episodic COmpressor efficiently aggregates crucial representations from micro to semi-macro levels.
Semantic ReTRiever dramatically reduces feature dimensionality while preserving relevant macro-level information.
arXiv Detail & Related papers (2024-08-30T17:52:55Z) - MeMSVD: Long-Range Temporal Structure Capturing Using Incremental SVD [27.472705540825316]
This paper is on long-term video understanding where the goal is to recognise human actions over long temporal windows (up to minutes long)
We propose an alternative to attention-based schemes which is based on a low-rank approximation of the memory obtained using Singular Value Decomposition.
Our scheme has two advantages: (a) it reduces complexity by more than an order of magnitude, and (b) it is amenable to an efficient implementation for the calculation of the memory bases.
arXiv Detail & Related papers (2024-06-11T12:03:57Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
We introduce a model-agnostic framework, the Long-term Dialogue Agent (LD-Agent)
It incorporates three independently tunable modules dedicated to event perception, persona extraction, and response generation.
The effectiveness, generality, and cross-domain capabilities of LD-Agent are empirically demonstrated.
arXiv Detail & Related papers (2024-06-09T21:58:32Z) - Evaluating Very Long-Term Conversational Memory of LLM Agents [95.84027826745609]
We introduce a machine-human pipeline to generate high-quality, very long-term dialogues.
We equip each agent with the capability of sharing and reacting to images.
The generated conversations are verified and edited by human annotators for long-range consistency.
arXiv Detail & Related papers (2024-02-27T18:42:31Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.
We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
We propose a temporal gating methodology to improve attention mechanism and recurrent units.
We also propose a Multi-hop Time-aware Attentive Memory network to integrate long-term and short-term preferences.
Our approach is scalable for candidate retrieval tasks and can be viewed as a non-linear generalization of latent factorization for dot-product based Top-K recommendation.
arXiv Detail & Related papers (2020-05-18T11:29:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.