Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths
- URL: http://arxiv.org/abs/2410.10858v1
- Date: Mon, 07 Oct 2024 06:37:25 GMT
- Title: Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths
- Authors: Yew Ken Chia, Guizhen Chen, Weiwen Xu, Luu Anh Tuan, Soujanya Poria, Lidong Bing,
- Abstract summary: We introduce Reasoning Paths Optimization (RPO), which enables learning to reason and explore from diverse paths.
Our approach encourages favorable branches at each reasoning step while penalizing unfavorable ones, enhancing the model's overall problem-solving performance.
We focus on multi-step reasoning tasks, such as math word problems and science-based exam questions.
- Score: 69.39559168050923
- License:
- Abstract: Advanced models such as OpenAI o1 exhibit impressive problem-solving capabilities through step-by-step reasoning. However, they may still falter on more complex problems, making errors that disrupt their reasoning paths. We attribute this to the expansive solution space, where each step has the risk of diverging into mistakes. To enhance language model reasoning, we introduce a specialized training framework called Reasoning Paths Optimization (RPO), which enables learning to reason and explore from diverse paths. Our approach encourages favorable branches at each reasoning step while penalizing unfavorable ones, enhancing the model's overall problem-solving performance. Reasoning Paths Optimization does not rely on large-scale human-annotated rationales or outputs from closed-source models, making it scalable and data-efficient. We focus on multi-step reasoning tasks, such as math word problems and science-based exam questions. The experiments demonstrate that our framework significantly enhances the reasoning performance of large language models, with up to 3.1% and 4.3% improvement on GSM8K and MMLU (STEM) respectively. Our data and code can be found at https://reasoning-paths.github.io.
Related papers
- A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
We show that OpenAI's o1 model has achieved the best performance on most datasets.
We also provide a detailed analysis on several reasoning benchmarks.
arXiv Detail & Related papers (2024-10-17T15:09:03Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
In reasoning tasks, even a minor error can cascade into inaccurate results.
We develop a method that avoids introducing external resources, relying instead on perturbations to the input.
Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks.
arXiv Detail & Related papers (2024-03-04T16:21:54Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
We propose PathFinder, a tree-search-based reasoning path generation approach.
It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding.
Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.
arXiv Detail & Related papers (2023-12-08T17:05:47Z) - DialCoT Meets PPO: Decomposing and Exploring Reasoning Paths in Smaller
Language Models [18.96271708412086]
Chain-of-Thought (CoT) prompting has proven to be effective in enhancing the reasoning capabilities of Large Language Models (LLMs) with at least 100 billion parameters.
We introduce Dialogue-guided Chain-of-Thought (DialCoT) which employs a dialogue format to generate intermediate reasoning steps, guiding the model toward the final answer.
arXiv Detail & Related papers (2023-10-08T08:52:13Z) - Solving math word problems with process- and outcome-based feedback [15.331173715345125]
We run the first comprehensive comparison between process- and outcome-based approaches trained on a natural language task.
We find that pure outcome-based supervision produces similar final-answer error rates with less label supervision.
For correct reasoning steps we find it necessary to use process-based supervision or supervision from learned reward models.
arXiv Detail & Related papers (2022-11-25T18:19:44Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Faithful Reasoning Using Large Language Models [12.132449274592668]
We show how LMs can be made to perform faithful multi-step reasoning via a process whose causal structure mirrors the underlying logical structure of the problem.
Our approach works by chaining together reasoning steps, where each step results from calls to two fine-tuned LMs.
We demonstrate the effectiveness of our model on multi-step logical deduction and scientific question-answering, showing that it outperforms baselines on final answer accuracy.
arXiv Detail & Related papers (2022-08-30T13:44:41Z) - Differentiable Logic Machines [38.21461039738474]
We propose a novel neural-logic architecture, called differentiable logic machine (DLM)
DLM can solve both inductive logic programming (ILP) and reinforcement learning (RL) problems.
On RL problems, without requiring an interpretable solution, DLM outperforms other non-interpretable neural-logic RL approaches.
arXiv Detail & Related papers (2021-02-23T07:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.