Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs
- URL: http://arxiv.org/abs/2412.21187v2
- Date: Sat, 01 Feb 2025 07:57:37 GMT
- Title: Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like LLMs
- Authors: Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, Dong Yu,
- Abstract summary: o1-like models can emulate human-like long-time thinking during inference.
This paper presents the first comprehensive study on the prevalent issue of overthinking in these models.
We propose strategies to mitigate overthinking, streamlining reasoning processes without compromising accuracy.
- Score: 76.43407125275202
- License:
- Abstract: The remarkable performance of models like the OpenAI o1 can be attributed to their ability to emulate human-like long-time thinking during inference. These models employ extended chain-of-thought (CoT) processes, exploring multiple strategies to enhance problem-solving capabilities. However, a critical question remains: How to intelligently and efficiently scale computational resources during testing. This paper presents the first comprehensive study on the prevalent issue of overthinking in these models, where excessive computational resources are allocated for simple problems with minimal benefit. We introduce novel efficiency metrics from both outcome and process perspectives to evaluate the rational use of computational resources by o1-like models. Using a self-training paradigm, we propose strategies to mitigate overthinking, streamlining reasoning processes without compromising accuracy. Experimental results show that our approach successfully reduces computational overhead while preserving model performance across a range of testsets with varying difficulty levels, such as GSM8K, MATH500, GPQA, and AIME.
Related papers
- Bag of Tricks for Inference-time Computation of LLM Reasoning [10.366475014241407]
We investigate and benchmark diverse inference-time computation strategies across reasoning tasks of varying complexity.
Our ablation studies reveal that previously overlooked strategies can significantly enhance performance.
We establish a standardized benchmark for inference-time computation by systematically evaluating six representative methods across eight reasoning tasks.
arXiv Detail & Related papers (2025-02-11T02:31:11Z) - Thoughts Are All Over the Place: On the Underthinking of o1-Like LLMs [86.79757571440082]
Large language models (LLMs) such as OpenAI's o1 have demonstrated remarkable abilities in complex reasoning tasks.
We identify a phenomenon we term underthinking, where o1-like LLMs frequently switch between different reasoning thoughts.
We propose a decoding strategy with thought switching penalty TIP that discourages premature transitions between thoughts.
arXiv Detail & Related papers (2025-01-30T18:58:18Z) - A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
We show that OpenAI's o1 model has achieved the best performance on most datasets.
We also provide a detailed analysis on several reasoning benchmarks.
arXiv Detail & Related papers (2024-10-17T15:09:03Z) - Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters [27.656263126925815]
We study the scaling of inference-time computation in LLMs.
We find that in both cases, the effectiveness of different approaches to scaling test-time compute critically varies depending on the difficulty of the prompt.
arXiv Detail & Related papers (2024-08-06T17:35:05Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Delayed Geometric Discounts: An Alternative Criterion for Reinforcement
Learning [1.52292571922932]
reinforcement learning (RL) proposes a theoretical background to learn optimal behaviors.
In practice, RL algorithms rely on geometric discounts to evaluate this optimality.
In this paper, we tackle these issues by generalizing the discounted problem formulation with a family of delayed objective functions.
arXiv Detail & Related papers (2022-09-26T07:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.