論文の概要: Generating Synthetic Datasets for Few-shot Prompt Tuning
- arxiv url: http://arxiv.org/abs/2410.10865v1
- Date: Tue, 08 Oct 2024 01:00:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-20 09:11:07.680186
- Title: Generating Synthetic Datasets for Few-shot Prompt Tuning
- Title(参考訳): Few-shot Prompt Tuningのための合成データセットの生成
- Authors: Xu Guo, Zilin Du, Boyang Li, Chunyan Miao,
- Abstract要約: 数ショットの学習設定では、フルモデルの微調整よりもはるかに遅れて、アプリケーションのスコープが制限される。
本稿では,ソフトプロンプトを学習するために,強力なLCMを用いてタスク固有のラベル付きデータを合成する。
我々は、勾配手術アプローチを用いて、合成データセットと実データセットの両方でソフトプロンプトを訓練する。
- 参考スコア(独自算出の注目度): 48.10054761841462
- License:
- Abstract: A major limitation of prompt tuning is its dependence on large labeled training datasets. Under few-shot learning settings, prompt tuning lags far behind full-model fine-tuning, limiting its scope of application. In this paper, we leverage the powerful LLMs to synthesize task-specific labeled data for training the soft prompts. We first introduce a distribution-aligned weighted generator tuning (DawGen) method to encourage generating in-distribution data that aligns with the few-shot real data. Then, we train soft prompts on both synthetic and real datasets using a gradient surgery approach, which eliminates the conflicting gradients from different data sources. Experiments on seven sentence-pair classification datasets demonstrate the effectiveness of our proposed method for boosting prompt tuning in few-shot learning settings. Results on QQP, MRPC, and SICK datasets are even comparable to the performance of transfer learning from large real-world datasets, showing the promise of synthetic data as an alternative for enhancing soft prompt tuning.
- Abstract(参考訳): プロンプトチューニングの大きな制限は、大きなラベル付きトレーニングデータセットに依存することである。
数ショットの学習設定の下では、フルモデルの微調整よりもはるかに遅れて、アプリケーションのスコープが制限される。
本稿では,ソフトプロンプトを学習するために,強力なLCMを用いてタスク固有のラベル付きデータを合成する。
まず,分布整合型重み付きジェネレータチューニング(DawGen)手法を導入する。
そして、勾配手術アプローチを用いて、合成データセットと実データセットの両方でソフトプロンプトを訓練し、異なるデータソースから矛盾する勾配を除去する。
7つの文対分類データセットに対する実験により,数ショットの学習環境における即時チューニングを促進させる手法の有効性が示された。
QQP、MRPC、SICKデータセットの結果は、大規模な実世界のデータセットからのトランスファーラーニングのパフォーマンスに匹敵するものであり、ソフトプロンプトチューニングの代替として合成データの約束を示している。
関連論文リスト
- FuseGen: PLM Fusion for Data-generation based Zero-shot Learning [18.51772808242954]
FuseGenは、新しいデータ生成ベースのゼロショット学習フレームワークである。
合成データセットからのサブセット選択のための新しい基準を導入する。
選択されたサブセットは、各PLMに対してコンテキスト内フィードバックを提供し、データセットの品質を向上する。
論文 参考訳(メタデータ) (2024-06-18T11:55:05Z) - RECOST: External Knowledge Guided Data-efficient Instruction Tuning [25.985023475991625]
我々は、現在のデータ効率のよい命令チューニング手法は、元の命令チューニングデータセットの品質に大きく依存していると論じる。
我々は、外部知識ベースの再評価と多様性に一貫性のあるサンプリングを単一のパイプラインに統合する、textbfRECOSTと呼ばれるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-27T09:47:36Z) - Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks [66.87070857705994]
低リソース環境では、データ拡張に使用するシードデータサンプルの量は極めて少ない。
本稿では、他のデータセットから豊富なサンプルを組み込むことで、トレーニングデータを増強する新しい手法を提案する。
このアプローチは、生成されたデータが関連性だけでなく、限られたシードデータだけで達成できるものよりも多様であることを保証する。
論文 参考訳(メタデータ) (2024-02-21T02:45:46Z) - Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
既存のデータセットプルーニングメソッドでは、データセット全体のトレーニングが必要になる。
本稿では、DLC(Distorting-based Learning Complexity)という、単純で、新規で、トレーニング不要な難易度スコアを提案する。
本手法は,より高速に学習できるサンプルを少ないパラメータで学習できるという観察結果に動機付けられている。
論文 参考訳(メタデータ) (2024-02-08T02:29:33Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGENは、高品質な合成データセットを生成するための、多段階のプロンプト戦略である。
我々は,LLMが不正確なラベル付きインスタンスを修正できるようにする自己補正法により,TarGENを増強する。
合成データセットを元のデータセットと比較した包括的な分析により、データセットの複雑さと多様性の類似または高いレベルが明らかになる。
論文 参考訳(メタデータ) (2023-10-27T03:32:17Z) - Bridging the Gap: Enhancing the Utility of Synthetic Data via
Post-Processing Techniques [7.967995669387532]
生成モデルは、実世界のデータを置き換えたり拡張したりできる合成データセットを生成するための有望なソリューションとして登場した。
本稿では,合成データセットの品質と多様性を向上させるために,新しい3つのポストプロセッシング手法を提案する。
Gap Filler(GaFi)は、Fashion-MNIST、CIFAR-10、CIFAR-100データセットにおいて、実精度スコアとのギャップを2.03%、1.78%、および3.99%に効果的に減少させることを示した。
論文 参考訳(メタデータ) (2023-05-17T10:50:38Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
GAN(Generative Adversarial Networks)は通常、限られたトレーニングデータが利用できる場合、過度に適合する。
ScoreMixは、様々な画像合成タスクのための、新しくスケーラブルなデータ拡張手法である。
論文 参考訳(メタデータ) (2022-10-27T02:55:15Z) - FairGen: Fair Synthetic Data Generation [0.3149883354098941]
本稿では,GANアーキテクチャに依存しないより公平な合成データを生成するパイプラインを提案する。
合成データを生成する場合、ほとんどのGANはトレーニングデータに存在するバイアスを増幅するが、これらのバイアスを誘発するサンプルを除去することで、GANは本質的に真の情報的サンプルに重点を置いている、と我々は主張する。
論文 参考訳(メタデータ) (2022-10-24T08:13:47Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - PromDA: Prompt-based Data Augmentation for Low-Resource NLU Tasks [61.51515750218049]
本稿では,低リソース自然言語理解(NLU)タスクのためのデータ拡張について述べる。
小型ソフト・プロンプトのみを訓練するPrompt-based Data Augmentation Model (PromDA)を提案する。
PromDAは2つの異なるビューを通して合成データを生成し、低品質データをNLUモデルを用いてフィルタリングする。
論文 参考訳(メタデータ) (2022-02-25T05:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。