論文の概要: Applying Refusal-Vector Ablation to Llama 3.1 70B Agents
- arxiv url: http://arxiv.org/abs/2410.10871v1
- Date: Tue, 08 Oct 2024 13:42:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-20 09:11:06.694131
- Title: Applying Refusal-Vector Ablation to Llama 3.1 70B Agents
- Title(参考訳): Llama 3.1 70B 剤に対するRefusal-Vector Ablationの適用
- Authors: Simon Lermen, Mateusz Dziemian, Govind Pimpale,
- Abstract要約: 本研究では,Llama 3.1 70Bにリファレルベクターアブレーションを適用し,単純なエージェントスキャフォールディングを実装し,制限のないエージェントを生成する。
以上の結果から,これらの拒否拒否ベクターアブレーションモデルが,流産やフィッシング攻撃などの有害なタスクを完了できることが示唆された。
Llama 3.1 インストラクションモデルでは,修正なしに最も有害なタスクを実行できるため,チャットモデルにおける安全性の微調整はエージェント動作に適さないことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recently, language models like Llama 3.1 Instruct have become increasingly capable of agentic behavior, enabling them to perform tasks requiring short-term planning and tool use. In this study, we apply refusal-vector ablation to Llama 3.1 70B and implement a simple agent scaffolding to create an unrestricted agent. Our findings imply that these refusal-vector ablated models can successfully complete harmful tasks, such as bribing officials or crafting phishing attacks, revealing significant vulnerabilities in current safety mechanisms. To further explore this, we introduce a small Safe Agent Benchmark, designed to test both harmful and benign tasks in agentic scenarios. Our results imply that safety fine-tuning in chat models does not generalize well to agentic behavior, as we find that Llama 3.1 Instruct models are willing to perform most harmful tasks without modifications. At the same time, these models will refuse to give advice on how to perform the same tasks when asked for a chat completion. This highlights the growing risk of misuse as models become more capable, underscoring the need for improved safety frameworks for language model agents.
- Abstract(参考訳): 近年、Llama 3.1インストラクトのような言語モデルでは、エージェント的な振る舞いがますます多くなり、短期的な計画やツールの使用を必要とするタスクを実行できるようになった。
本研究では,Llama 3.1 70Bにリファレルベクターアブレーションを適用し,単純なエージェントスキャフォールディングを実装し,制限のないエージェントを生成する。
以上の結果から,これらの拒否ベクターアブレーションモデルが,流産やフィッシング攻撃などの有害な作業の完了に成功し,現在の安全メカニズムに重大な脆弱性があることが示唆された。
これをさらに探求するために、エージェントシナリオにおける有害タスクと良性タスクの両方をテストするために設計された、小さなセーフエージェントベンチマークを導入する。
Llama 3.1 インストラクタモデルでは、修正なしに最も有害なタスクを実行できるため、チャットモデルにおける安全性の微調整は、エージェント的行動によく当てはまらないことを示唆している。
同時に、これらのモデルは、チャットの完了を尋ねると、同じタスクを実行する方法に関するアドバイスを拒むだろう。
これは、モデルがより有能になるにつれて、誤用が増加するリスクを強調し、言語モデルエージェントの安全性フレームワークの改善の必要性を強調している。
関連論文リスト
- Breaking ReAct Agents: Foot-in-the-Door Attack Will Get You In [5.65782619470663]
本稿では,直感的かつ効果的な手法でReActエージェントをどのように活用できるかを検討する。
実験の結果,間接的プロンプトインジェクション攻撃は,後続の悪意ある行為を行うエージェントの可能性を著しく高めることができることがわかった。
この脆弱性を軽減するために,エージェントが実行中の動作の安全性を再評価する簡単なリフレクション機構の実装を提案する。
論文 参考訳(メタデータ) (2024-10-22T12:24:41Z) - AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents [84.96249955105777]
LLMエージェントは誤用された場合、より大きなリスクを引き起こすが、その堅牢性は未発見のままである。
我々は, LLMエージェント誤用の研究を容易にするために, AgentHarmと呼ばれる新しいベンチマークを提案する。
主要なLLMは、ジェイルブレイクなしで悪意のあるエージェント要求に驚くほど準拠している。
論文 参考訳(メタデータ) (2024-10-11T17:39:22Z) - Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification [35.16099878559559]
大規模言語モデル(LLM)は大きな発展を遂げ、現実世界のアプリケーションにデプロイされている。
エージェントが繰り返しまたは無関係なアクションを実行することを誤解させることで誤動作を引き起こす新しいタイプの攻撃を導入する。
実験の結果、これらの攻撃は複数のシナリオで80%以上の障害率を誘導できることがわかった。
論文 参考訳(メタデータ) (2024-07-30T14:35:31Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
大型言語モデル(LLM)における安全バックドア攻撃は、正常な相互作用中の検出を回避しながら、安全でない振る舞いをステルス的に引き起こすことができる。
モデル埋め込み空間において,バックドアトリガーが比較的均一なドリフトを引き起こすという知見を活かした緩和手法であるBEEARを提案する。
両レベル最適化手法は、不要な振る舞いを誘発する普遍的な埋め込み摂動を特定し、モデルパラメータを調整し、これらの摂動に対する安全な振舞いを強化する。
論文 参考訳(メタデータ) (2024-06-24T19:29:47Z) - Model for Peanuts: Hijacking ML Models without Training Access is Possible [5.005171792255858]
モデルハイジャック(英: Model hijacking)とは、被害者のモデルをハイジャックして元のモデルとは異なるタスクを実行する攻撃である。
本研究では、未知の入力サンプルを分類するために、SnatchMLと呼ばれる推論時にモデルハイジャックを行うための簡単なアプローチを提案する。
最初にメタ学習と呼ぶ新しいアプローチを提案し、モデルが元のデータセットをトレーニングしながら潜在的に悪意のあるタスクを解放するのに役立つように設計した。
論文 参考訳(メタデータ) (2024-06-03T18:04:37Z) - Query-Based Adversarial Prompt Generation [67.238873588125]
我々は、アライメント言語モデルが有害な文字列を出力する原因となる敵の例を構築します。
GPT-3.5とOpenAIの安全分類器に対する攻撃を検証する。
論文 参考訳(メタデータ) (2024-02-19T18:01:36Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
表現空間では、入力クエリは通常、安全プロンプトによって「より高い拒絶」方向に移動される。
これらの知見に触発されて,安全性向上,すなわちDROの最適化手法を提案する。
安全性プロンプトを継続的かつトレーニング可能な埋め込みとして扱うことで、DROは、その有害性に応じて、クエリの表現を拒否方向に沿ってあるいは反対に移動させることを学ぶ。
論文 参考訳(メタデータ) (2024-01-31T17:28:24Z) - Navigating the OverKill in Large Language Models [84.62340510027042]
モデルがどのように処理し,クエリの安全性を判断するかを検討することで,過剰スキルの要因について検討する。
以上の結果から,モデル内にショートカットが存在することが明らかとなり,"キル"のような有害な単語が過剰に認識され,安全性が強調され,過度なスキルが増すことが示唆された。
我々は、この現象を緩和するために、トレーニングフリーでモデルに依存しないセルフコントラストデコーディング(Self-Contrastive Decoding、CD)を導入する。
論文 参考訳(メタデータ) (2024-01-31T07:26:47Z) - AGI Agent Safety by Iteratively Improving the Utility Function [0.0]
本稿では,AGIエージェントのユーティリティ機能の反復的改善を支援するために,専用の入力端末を作成するAGIセーフティ層を提案する。
因果影響図(CID)にマッピングする作業が進行中であることを示す。
次に、既知の機械学習システムや将来のAGIレベルの学習システムに、安全層をラップする学習エージェントの設計を示す。
論文 参考訳(メタデータ) (2020-07-10T14:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。