Adaptive AI-Driven Material Synthesis: Towards Autonomous 2D Materials Growth
- URL: http://arxiv.org/abs/2410.10885v1
- Date: Thu, 10 Oct 2024 15:00:52 GMT
- Title: Adaptive AI-Driven Material Synthesis: Towards Autonomous 2D Materials Growth
- Authors: Leonardo Sabattini, Annalisa Coriolano, Corneel Casert, Stiven Forti, Edward S. Barnard, Fabio Beltram, Massimiliano Pontil, Stephen Whitelam, Camilla Coletti, Antonio Rossi,
- Abstract summary: This study explores the forefront of autonomous materials synthesis using an artificial neural network (ANN) trained by evolutionary methods.
Our approach demonstrates that a neural network can iteratively and autonomously learn a time-dependent protocol for the efficient growth of graphene.
This work makes a substantial contribution to the field of materials engineering, fostering a new era of innovation and efficiency in the synthesis process.
- Score: 17.92848271095797
- License:
- Abstract: Two-dimensional (2D) materials are poised to revolutionize current solid-state technology with their extraordinary properties. Yet, the primary challenge remains their scalable production. While there have been significant advancements, much of the scientific progress has depended on the exfoliation of materials, a method that poses severe challenges for large-scale applications. With the advent of artificial intelligence (AI) in materials science, innovative synthesis methodologies are now on the horizon. This study explores the forefront of autonomous materials synthesis using an artificial neural network (ANN) trained by evolutionary methods, focusing on the efficient production of graphene. Our approach demonstrates that a neural network can iteratively and autonomously learn a time-dependent protocol for the efficient growth of graphene, without requiring pretraining on what constitutes an effective recipe. Evaluation criteria are based on the proximity of the Raman signature to that of monolayer graphene: higher scores are granted to outcomes whose spectrum more closely resembles that of an ideal continuous monolayer structure. This feedback mechanism allows for iterative refinement of the ANN's time-dependent synthesis protocols, progressively improving sample quality. Through the advancement and application of AI methodologies, this work makes a substantial contribution to the field of materials engineering, fostering a new era of innovation and efficiency in the synthesis process.
Related papers
- BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment [51.49238426241974]
This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction.
By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules.
arXiv Detail & Related papers (2024-03-25T03:23:03Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
We introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature.
Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - AIMS-EREA -- A framework for AI-accelerated Innovation of Materials for
Sustainability -- for Environmental Remediation and Energy Applications [0.0]
AIMS-EREA is our novel framework to blend best of breed of Material Science theory with power of Generative AI.
This also helps to eliminate the possibility of production of hazardous residues and bye-products of the reactions.
arXiv Detail & Related papers (2023-11-18T12:35:45Z) - Machine-Learning-Optimized Perovskite Nanoplatelet Synthesis [55.41644538483948]
We develop an algorithm to improve the quality of CsPbBr3 nanoplatelets (NPLs) using only 200 total syntheses.
The algorithm can predict the resulting PL emission maxima of the NPL dispersions based on the precursor ratios.
arXiv Detail & Related papers (2022-10-18T11:54:11Z) - A Deep Learning Generative Model Approach for Image Synthesis of Plant
Leaves [62.997667081978825]
We generate via advanced Deep Learning (DL) techniques artificial leaf images in an automatized way.
We aim to dispose of a source of training samples for AI applications for modern crop management.
arXiv Detail & Related papers (2021-11-05T10:53:35Z) - Automated Biodesign Engineering by Abductive Meta-Interpretive Learning [8.788941848262786]
We propose an automated biodesign engineering framework empowered by Abductive Meta-Interpretive Learning ($Meta_Abd$)
In this work, we propose an automated biodesign engineering framework empowered by Abductive Meta-Interpretive Learning ($Meta_Abd$)
arXiv Detail & Related papers (2021-05-17T12:10:26Z) - Artificial Intelligence based Autonomous Molecular Design for Medical
Therapeutic: A Perspective [9.371378627575883]
Domain-aware machine learning (ML) models have been increasingly adopted for accelerating small molecule therapeutic design.
We present the most recent breakthrough achieved by each of the components, and how such autonomous AI and ML workflow can be realized.
arXiv Detail & Related papers (2021-02-10T00:43:46Z) - Autonomous synthesis of metastable materials [13.506040229814499]
We demonstrate accelerated synthesis and exploration of metastable materials through hierarchical autonomous experimentation governed by the Scientific Autonomous Reasoning Agent (SARA)
SARA integrates robotic materials synthesis and characterization along with a hierarchy of AI methods that efficiently reveal the structure of processing phase diagrams.
We demonstrate its performance by autonomously mapping synthesis phase boundaries for the Bi$$O$_3$ system, leading to orders-of- acceleration in establishment of a synthesis phase diagram.
arXiv Detail & Related papers (2021-01-19T00:29:26Z) - Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search [83.22850633478302]
Retrosynthetic planning identifies a series of reactions that can lead to the synthesis of a target product.
Existing methods either require expensive return estimation by rollout with high variance, or optimize for search speed rather than the quality.
We propose Retro*, a neural-based A*-like algorithm that finds high-quality synthetic routes efficiently.
arXiv Detail & Related papers (2020-06-29T05:53:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.