Machine Learning - Driven Materials Discovery: Unlocking Next-Generation Functional Materials - A minireview
- URL: http://arxiv.org/abs/2503.18975v1
- Date: Sat, 22 Mar 2025 15:24:38 GMT
- Title: Machine Learning - Driven Materials Discovery: Unlocking Next-Generation Functional Materials - A minireview
- Authors: Dilshod Nematov, Mirabbos Hojamberdiev,
- Abstract summary: Machine learning (ML)-driven approaches are revolutionizing materials discovery, property prediction, and material design.<n>This review highlights real-world applications of automated ML-driven approaches in predicting mechanical, thermal, electrical, and optical properties of materials.<n>Ultimately, the synergy between AI, automated experimentation, and computational modeling transforms the way the materials are discovered, optimized, and designed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of machine learning and artificial intelligence (AI)-driven techniques is revolutionizing materials discovery, property prediction, and material design by minimizing human intervention and accelerating scientific progress. This review provides a comprehensive overview of smart, machine learning (ML)-driven approaches, emphasizing their role in predicting material properties, discovering novel compounds, and optimizing material structures. Key methodologies ranging from deep learning, graph neural networks, and Bayesian optimization to automated generative models, such as generative adversarial networks (GANs) and variational autoencoders (VAEs) enable the autonomous design of materials with tailored functionalities. By leveraging AutoML frameworks (e.g., AutoGluon, TPOT, and H2O.ai), researchers can automate the model selection, hyperparameter tuning, and feature engineering, significantly improving the efficiency of materials informatics. Furthermore, the integration of AI-driven robotic laboratories and high-throughput computing has established a fully automated pipeline for rapid synthesis and experimental validation, drastically reducing the time and cost of material discovery. This review highlights real-world applications of automated ML-driven approaches in predicting mechanical, thermal, electrical, and optical properties of materials, demonstrating successful cases in superconductors, catalysts, photovoltaics, and energy storage systems. We also address key challenges, such as data quality, interpretability, and the integration of AutoML with quantum computing, which are essential for future advancements. Ultimately, the synergy between AI, automated experimentation, and computational modeling transforms the way the materials are discovered, optimized, and designed, paving the way for next-generation innovations in energy, electronics, and nanotechnology.
Related papers
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.
The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.
This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Rapid and Automated Alloy Design with Graph Neural Network-Powered LLM-Driven Multi-Agent Systems [0.0]
A multi-agent AI model is used to automate the discovery of new metallic alloys.
We focus on the NbMoTa family of body-centered cubic (bcc) alloys, modeled using an ML-based interatomic potential.
By synergizing the predictive power of GNNs with the dynamic collaboration of LLM-based agents, the system autonomously navigates vast alloy design spaces.
arXiv Detail & Related papers (2024-10-17T17:06:26Z) - Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Unveiling AI's Potential Through Tools, Techniques, and Applications [17.624263707781655]
Artificial intelligence (AI), machine learning, and deep learning have become transformative forces in big data analytics and management.
This article delves into the foundational concepts and cutting-edge developments in these fields.
By bridging theoretical underpinnings with actionable strategies, it showcases the potential of AI and LLMs to revolutionize big data management.
arXiv Detail & Related papers (2024-10-02T06:24:51Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
We introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature.
Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
We introduce OmniForce, a human-centered AutoML system that yields both human-assisted ML and ML-assisted human techniques.
We show how OmniForce can put an AutoML system into practice and build adaptive AI in open-environment scenarios.
arXiv Detail & Related papers (2023-03-01T13:35:22Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Artificial Intelligence in Material Engineering: A review on
applications of AI in Material Engineering [0.0]
High-performance computing has made it possible to test deep learning (DL) models with significant parameters.
generative adversarial networks (GANs) have facilitated the generation of chemical compositions of inorganic materials.
The use of AI to analyze the results from existing analytical instruments is also discussed.
arXiv Detail & Related papers (2022-09-15T04:21:07Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - An Automated Scanning Transmission Electron Microscope Guided by Sparse
Data Analytics [0.0]
We discuss the design of a closed-loop instrument control platform guided by emerging sparse data analytics.
We demonstrate how a centralized controller, informed by machine learning combining limited $a$ $priori$ knowledge and task-based discrimination, can drive on-the-fly experimental decision-making.
arXiv Detail & Related papers (2021-09-30T00:25:35Z) - AutoMat: Accelerated Computational Electrochemical systems Discovery [0.7865939710072847]
Large-scale electrification is vital to addressing the climate crisis, but several scientific and technological challenges remain to fully electrify both the chemical industry and transportation.
New electrochemical materials will be critical, but their development currently relies heavily on human-time-intensive experimental trial and error and computationally expensive first-principles, meso-scale and continuum simulations.
We present an automated workflow, AutoMat, that accelerates these computational steps by introducing both automated input generation and management of simulations across scales from first principles to continuum device modeling.
arXiv Detail & Related papers (2020-11-03T20:45:29Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.