COME: Test-time adaption by Conservatively Minimizing Entropy
- URL: http://arxiv.org/abs/2410.10894v1
- Date: Sat, 12 Oct 2024 09:20:06 GMT
- Title: COME: Test-time adaption by Conservatively Minimizing Entropy
- Authors: Qingyang Zhang, Yatao Bian, Xinke Kong, Peilin Zhao, Changqing Zhang,
- Abstract summary: Conservatively Minimize the Entropy (COME) is a drop-in replacement of traditional entropy (EM)
COME explicitly models the uncertainty by characterizing a Dirichlet prior distribution over model predictions.
We show that COME achieves state-of-the-art performance on commonly used benchmarks.
- Score: 45.689829178140634
- License:
- Abstract: Machine learning models must continuously self-adjust themselves for novel data distribution in the open world. As the predominant principle, entropy minimization (EM) has been proven to be a simple yet effective cornerstone in existing test-time adaption (TTA) methods. While unfortunately its fatal limitation (i.e., overconfidence) tends to result in model collapse. For this issue, we propose to Conservatively Minimize the Entropy (COME), which is a simple drop-in replacement of traditional EM to elegantly address the limitation. In essence, COME explicitly models the uncertainty by characterizing a Dirichlet prior distribution over model predictions during TTA. By doing so, COME naturally regularizes the model to favor conservative confidence on unreliable samples. Theoretically, we provide a preliminary analysis to reveal the ability of COME in enhancing the optimization stability by introducing a data-adaptive lower bound on the entropy. Empirically, our method achieves state-of-the-art performance on commonly used benchmarks, showing significant improvements in terms of classification accuracy and uncertainty estimation under various settings including standard, life-long and open-world TTA, i.e., up to $34.5\%$ improvement on accuracy and $15.1\%$ on false positive rate.
Related papers
- ETAGE: Enhanced Test Time Adaptation with Integrated Entropy and Gradient Norms for Robust Model Performance [18.055032898349438]
Test time adaptation (TTA) equips deep learning models to handle unseen test data that deviates from the training distribution.
We introduce ETAGE, a refined TTA method that integrates entropy minimization with gradient norms and PLPD.
Our method prioritizes samples that are less likely to cause instability by combining high entropy with high gradient norms out of adaptation.
arXiv Detail & Related papers (2024-09-14T01:25:52Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts.
We propose a test-time Forward-Optimization Adaptation (FOA) method.
FOA runs on quantized 8-bit ViT, outperforms gradient-based TENT on full-precision 32-bit ViT, and achieves an up to 24-fold memory reduction on ImageNet-C.
arXiv Detail & Related papers (2024-04-02T05:34:33Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and test data by adapting a given model w.r.t. any test sample.
Prior methods perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications.
We propose an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples.
arXiv Detail & Related papers (2024-03-18T05:49:45Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - REALM: Robust Entropy Adaptive Loss Minimization for Improved
Single-Sample Test-Time Adaptation [5.749155230209001]
Fully-test-time adaptation (F-TTA) can mitigate performance loss due to distribution shifts between train and test data.
We present a general framework for improving robustness of F-TTA to noisy samples, inspired by self-paced learning and robust loss functions.
arXiv Detail & Related papers (2023-09-07T18:44:58Z) - Towards Open-Set Test-Time Adaptation Utilizing the Wisdom of Crowds in
Entropy Minimization [47.61333493671805]
Test-time adaptation (TTA) methods rely on the model's predictions to adapt the source pretrained model to the unlabeled target domain.
We propose a simple yet effective sample selection method inspired by the following crucial empirical finding.
arXiv Detail & Related papers (2023-08-14T01:24:18Z) - RDumb: A simple approach that questions our progress in continual test-time adaptation [12.374649969346441]
Test-Time Adaptation (TTA) allows to update pre-trained models to changing data distributions at deployment time.
Recent work proposed and applied methods for continual adaptation over long timescales.
We find that eventually all but one state-of-the-art methods collapse and perform worse than a non-adapting model.
arXiv Detail & Related papers (2023-06-08T17:52:34Z) - Tent: Fully Test-time Adaptation by Entropy Minimization [77.85911673550851]
A model must adapt itself to generalize to new and different data during testing.
In this setting of fully test-time adaptation the model has only the test data and its own parameters.
We propose to adapt by test entropy minimization (tent): we optimize the model for confidence as measured by the entropy of its predictions.
arXiv Detail & Related papers (2020-06-18T17:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.