ETAGE: Enhanced Test Time Adaptation with Integrated Entropy and Gradient Norms for Robust Model Performance
- URL: http://arxiv.org/abs/2409.09251v1
- Date: Sat, 14 Sep 2024 01:25:52 GMT
- Title: ETAGE: Enhanced Test Time Adaptation with Integrated Entropy and Gradient Norms for Robust Model Performance
- Authors: Afshar Shamsi, Rejisa Becirovic, Ahmadreza Argha, Ehsan Abbasnejad, Hamid Alinejad-Rokny, Arash Mohammadi,
- Abstract summary: Test time adaptation (TTA) equips deep learning models to handle unseen test data that deviates from the training distribution.
We introduce ETAGE, a refined TTA method that integrates entropy minimization with gradient norms and PLPD.
Our method prioritizes samples that are less likely to cause instability by combining high entropy with high gradient norms out of adaptation.
- Score: 18.055032898349438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Test time adaptation (TTA) equips deep learning models to handle unseen test data that deviates from the training distribution, even when source data is inaccessible. While traditional TTA methods often rely on entropy as a confidence metric, its effectiveness can be limited, particularly in biased scenarios. Extending existing approaches like the Pseudo Label Probability Difference (PLPD), we introduce ETAGE, a refined TTA method that integrates entropy minimization with gradient norms and PLPD, to enhance sample selection and adaptation. Our method prioritizes samples that are less likely to cause instability by combining high entropy with high gradient norms out of adaptation, thus avoiding the overfitting to noise often observed in previous methods. Extensive experiments on CIFAR-10-C and CIFAR-100-C datasets demonstrate that our approach outperforms existing TTA techniques, particularly in challenging and biased scenarios, leading to more robust and consistent model performance across diverse test scenarios. The codebase for ETAGE is available on https://github.com/afsharshamsi/ETAGE.
Related papers
- COME: Test-time adaption by Conservatively Minimizing Entropy [45.689829178140634]
Conservatively Minimize the Entropy (COME) is a drop-in replacement of traditional entropy (EM)
COME explicitly models the uncertainty by characterizing a Dirichlet prior distribution over model predictions.
We show that COME achieves state-of-the-art performance on commonly used benchmarks.
arXiv Detail & Related papers (2024-10-12T09:20:06Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - MedBN: Robust Test-Time Adaptation against Malicious Test Samples [11.397666167665484]
Test-time adaptation (TTA) has emerged as a promising solution to address performance decay due to unforeseen distribution shifts between training and test data.
Previous studies have uncovered security vulnerabilities within TTA even when a small proportion of the test batch is maliciously manipulated.
We propose median batch normalization (MedBN), leveraging the robustness of the median for statistics estimation within the batch normalization layer during test-time inference.
arXiv Detail & Related papers (2024-03-28T11:33:02Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and test data by adapting a given model w.r.t. any test sample.
Prior methods perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications.
We propose an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples.
arXiv Detail & Related papers (2024-03-18T05:49:45Z) - Persistent Test-time Adaptation in Recurring Testing Scenarios [12.024233973321756]
Current test-time adaptation (TTA) approaches aim to adapt a machine learning model to environments that change continuously.
Yet, it is unclear whether TTA methods can maintain their adaptability over prolonged periods.
We propose persistent TTA (PeTTA) which senses when the model is diverging towards collapse and adjusts the adaptation strategy.
arXiv Detail & Related papers (2023-11-30T02:24:44Z) - REALM: Robust Entropy Adaptive Loss Minimization for Improved
Single-Sample Test-Time Adaptation [5.749155230209001]
Fully-test-time adaptation (F-TTA) can mitigate performance loss due to distribution shifts between train and test data.
We present a general framework for improving robustness of F-TTA to noisy samples, inspired by self-paced learning and robust loss functions.
arXiv Detail & Related papers (2023-09-07T18:44:58Z) - Diverse Data Augmentation with Diffusions for Effective Test-time Prompt
Tuning [73.75282761503581]
We propose DiffTPT, which leverages pre-trained diffusion models to generate diverse and informative new data.
Our experiments on test datasets with distribution shifts and unseen categories demonstrate that DiffTPT improves the zero-shot accuracy by an average of 5.13%.
arXiv Detail & Related papers (2023-08-11T09:36:31Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
Test-Time Adaptation (TTA) has emerged as a promising approach for tackling the robustness challenge under distribution shifts.
We present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols.
arXiv Detail & Related papers (2023-06-06T09:35:29Z) - Towards Stable Test-Time Adaptation in Dynamic Wild World [60.98073673220025]
Test-time adaptation (TTA) has shown to be effective at tackling distribution shifts between training and testing data by adapting a given model on test samples.
Online model updating of TTA may be unstable and this is often a key obstacle preventing existing TTA methods from being deployed in the real world.
arXiv Detail & Related papers (2023-02-24T02:03:41Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.