An Explainable AI Model for Predicting the Recurrence of Differentiated Thyroid Cancer
- URL: http://arxiv.org/abs/2410.10907v1
- Date: Sun, 13 Oct 2024 23:12:33 GMT
- Title: An Explainable AI Model for Predicting the Recurrence of Differentiated Thyroid Cancer
- Authors: Mohammad Al-Sayed Ahmad, Jude Haddad,
- Abstract summary: This study employs machine learning, particularly deep learning models, to predict the recurrence of thyroid cancer.
By analysing a dataset containing clinicopathological features of patients, the model achieved remarkable accuracy rates of 98% during training and 96% during testing.
- Score: 0.0
- License:
- Abstract: Thyroid carcinoma, a significant yet often controllable cancer, has seen a rise in cases, largely due to advancements in diagnostic methods. Differentiated thyroid cancer (DTC), which includes papillary and follicular varieties, is typically associated with a positive prognosis in academic circles. Nevertheless, there are still some individuals who may experience a recurrence. This study employs machine learning, particularly deep learning models, to predict the recurrence of DTC, with the goal of improving patient care through personalized treatment approaches. By analysing a dataset containing clinicopathological features of patients, the model achieved remarkable accuracy rates of 98% during training and 96% during testing. To improve the model's interpretability, we used techniques like LIME and Morris Sensitivity Analysis. These methods gave us valuable insights into how the model makes decisions. The results suggest that combining deep learning models with interpretability techniques can be extremely useful in quickly identifying the recurrence of thyroid cancer in patients. This can help in making informed therapeutic choices and customizing treatment approaches for individual patients.
Related papers
- HIST-AID: Leveraging Historical Patient Reports for Enhanced Multi-Modal Automatic Diagnosis [38.13689106933105]
We present HIST-AID, a framework that enhances automatic diagnostic accuracy using historical reports.
Our experiments demonstrate significant improvements, with AUROC increasing by 6.56% and AUPRC by 9.51% compared to models that rely solely on radiographic scans.
arXiv Detail & Related papers (2024-11-16T03:20:53Z) - TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
Topological data analysis offers a unique approach by extracting essential information through the evaluation of topological patterns across different color channels.
We show that the inclusion of topological features significantly improves the differentiation of tumor types in ovarian and breast cancers.
arXiv Detail & Related papers (2024-10-13T12:24:13Z) - CIResDiff: A Clinically-Informed Residual Diffusion Model for Predicting Idiopathic Pulmonary Fibrosis Progression [38.14873567230233]
Idiopathic Pulmonary Fibrosis (IPF) significantly correlates with higher patient mortality rates.
Current clinical criteria define disease progression requiring two CT scans with a one-year interval.
We develop a novel diffusion model to accurately predict the progression of IPF by generating patient's follow-up CT scan.
arXiv Detail & Related papers (2024-08-01T22:01:42Z) - Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
This study focuses on analyzing dermoscopy images to determine the depth of melanomas.
The Breslow depth, measured from the top of the granular layer to the deepest point of tumor invasion, serves as a crucial parameter for staging melanoma and guiding treatment decisions.
Various datasets, including ISIC and private collections, were used, comprising a total of 1162 images.
Results indicated that the models achieved significant improvements over previous methods.
arXiv Detail & Related papers (2024-06-19T11:07:55Z) - Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies.
Medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes.
This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients.
arXiv Detail & Related papers (2024-04-11T21:47:13Z) - Parameter-Efficient Methods for Metastases Detection from Clinical Notes [19.540079966780954]
The objective of this study is to automate the detection of metastatic liver disease from free-style computed tomography (CT) radiology reports.
Our research demonstrates that transferring knowledge using three approaches can improve model performance.
arXiv Detail & Related papers (2023-10-27T20:30:59Z) - Towards Outcome-Driven Patient Subgroups: A Machine Learning Analysis
Across Six Depression Treatment Studies [41.34047608276278]
We analyzed data from six clinical trials of pharmacological treatment for depression using a neural network model.
A model classifying remission and outputting individual remission probabilities for five first-line monotherapies and three combination treatments was trained.
Post-hoc analyses yielded clusters (subgroups) based on patient prototypes learned during training.
arXiv Detail & Related papers (2023-03-24T14:34:09Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - A Machine Learning Challenge for Prognostic Modelling in Head and Neck
Cancer Using Multi-modal Data [0.10651507097431492]
We have conducted an institutional machine learning challenge to develop an accurate model for overall survival prediction in head and neck cancer.
We compared 12 different submissions using imaging and clinical data, separately or in combination.
The winning approach used non-linear, multitask learning on clinical data and tumour volume, achieving high prognostic accuracy for 2-year and lifetime survival prediction.
arXiv Detail & Related papers (2021-01-28T11:20:34Z) - Divide-and-Rule: Self-Supervised Learning for Survival Analysis in
Colorectal Cancer [9.431791041887957]
We propose a self-supervised learning method that learns a representation of tissue regions as well as a metric of the clustering to obtain their underlying patterns.
We show that the proposed approach can benefit from linear predictors to avoid overfitting in patient outcomes predictions.
arXiv Detail & Related papers (2020-07-07T09:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.