HIST-AID: Leveraging Historical Patient Reports for Enhanced Multi-Modal Automatic Diagnosis
- URL: http://arxiv.org/abs/2411.10684v1
- Date: Sat, 16 Nov 2024 03:20:53 GMT
- Title: HIST-AID: Leveraging Historical Patient Reports for Enhanced Multi-Modal Automatic Diagnosis
- Authors: Haoxu Huang, Cem M. Deniz, Kyunghyun Cho, Sumit Chopra, Divyam Madaan,
- Abstract summary: We present HIST-AID, a framework that enhances automatic diagnostic accuracy using historical reports.
Our experiments demonstrate significant improvements, with AUROC increasing by 6.56% and AUPRC by 9.51% compared to models that rely solely on radiographic scans.
- Score: 38.13689106933105
- License:
- Abstract: Chest X-ray imaging is a widely accessible and non-invasive diagnostic tool for detecting thoracic abnormalities. While numerous AI models assist radiologists in interpreting these images, most overlook patients' historical data. To bridge this gap, we introduce Temporal MIMIC dataset, which integrates five years of patient history, including radiographic scans and reports from MIMIC-CXR and MIMIC-IV, encompassing 12,221 patients and thirteen pathologies. Building on this, we present HIST-AID, a framework that enhances automatic diagnostic accuracy using historical reports. HIST-AID emulates the radiologist's comprehensive approach, leveraging historical data to improve diagnostic accuracy. Our experiments demonstrate significant improvements, with AUROC increasing by 6.56% and AUPRC by 9.51% compared to models that rely solely on radiographic scans. These gains were consistently observed across diverse demographic groups, including variations in gender, age, and racial categories. We show that while recent data boost performance, older data may reduce accuracy due to changes in patient conditions. Our work paves the potential of incorporating historical data for more reliable automatic diagnosis, providing critical support for clinical decision-making.
Related papers
- Knowledge-driven AI-generated data for accurate and interpretable breast ultrasound diagnoses [29.70102468004044]
We introduce a pipeline, TAILOR, that builds a knowledge-driven generative model to produce tailored synthetic data.
The generative model, using 3,749 lesions as source data, can generate millions of breast-US images, especially for error-prone rare cases.
In the prospective external evaluation, our diagnostic model outperforms the average performance of nine radiologists by 33.5% in specificity with the same sensitivity.
arXiv Detail & Related papers (2024-07-23T16:49:01Z) - HERGen: Elevating Radiology Report Generation with Longitudinal Data [18.370515015160912]
We propose a novel History Enhanced Radiology Report Generation (HERGen) framework to efficiently integrate longitudinal data across patient visits.
Our approach not only allows for comprehensive analysis of varied historical data but also improves the quality of generated reports through an auxiliary contrastive objective.
The extensive evaluations across three datasets demonstrate that our framework surpasses existing methods in generating accurate radiology reports and effectively predicting disease progression from medical images.
arXiv Detail & Related papers (2024-07-21T13:29:16Z) - The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report Generation and How to Incorporate It [12.61239008314719]
This study investigates the integration of diverse patient data sources into multimodal language models for automated chest X-ray (CXR) report generation.
Utilising the MIMIC-CXR and MIMIC-IV-ED datasets, we incorporate detailed patient information such as a vital signsperiodic, medications, and clinical history to enhance diagnostic accuracy.
arXiv Detail & Related papers (2024-06-19T03:25:31Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Multi-confound regression adversarial network for deep learning-based
diagnosis on highly heterogenous clinical data [1.2891210250935143]
We developed a novel deep learning architecture, MUCRAN, to train a deep learning model on highly heterogeneous clinical data.
We trained MUCRAN using 16,821 clinical T1 Axial brain MRIs collected from Massachusetts General Hospital before 2019.
The model showed a robust performance of over 90% accuracy on newly collected data.
arXiv Detail & Related papers (2022-05-05T18:39:09Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z) - Query-Focused EHR Summarization to Aid Imaging Diagnosis [22.21438906817433]
We propose and evaluate models that extract relevant text snippets from patient records to provide a rough case summary.
We use groups of International Classification of Diseases (ICD) codes observed in 'future' records as noisy proxies for 'downstream' diagnoses.
We train (via distant supervision) and evaluate variants of this model on EHR data from Brigham and Women's Hospital in Boston and MIMIC-III.
arXiv Detail & Related papers (2020-04-09T16:32:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.