論文の概要: AlphaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large Language Models
- arxiv url: http://arxiv.org/abs/2410.10912v1
- Date: Mon, 14 Oct 2024 03:35:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:03:58.259391
- Title: AlphaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large Language Models
- Title(参考訳): AlphaPruning:大規模言語モデルのレイヤーワイドプルーニング改善のためのヘビータイア自己正規化理論の利用
- Authors: Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang, Michael W. Mahoney, Yaoqing Yang,
- Abstract要約: そこで我々は,AlphaPruningを提案する。このAlphaPruningは,より理論的に原理化された方法で,水平方向の空間比を割り振る。
以上よりAlphaPruning prunes LLaMA-7B to 80% sparsity while maintain well perplexity, marking a first in the literature on LLMs。
- 参考スコア(独自算出の注目度): 94.82766517752418
- License:
- Abstract: Recent work on pruning large language models (LLMs) has shown that one can eliminate a large number of parameters without compromising performance, making pruning a promising strategy to reduce LLM model size. Existing LLM pruning strategies typically assign uniform pruning ratios across layers, limiting overall pruning ability; and recent work on layerwise pruning of LLMs is often based on heuristics that can easily lead to suboptimal performance. In this paper, we leverage Heavy-Tailed Self-Regularization (HT-SR) Theory, in particular the shape of empirical spectral densities (ESDs) of weight matrices, to design improved layerwise pruning ratios for LLMs. Our analysis reveals a wide variability in how well-trained, and thus relatedly how prunable, different layers of an LLM are. Based on this, we propose AlphaPruning, which uses shape metrics to allocate layerwise sparsity ratios in a more theoretically principled manner. AlphaPruning can be used in conjunction with multiple existing LLM pruning methods. Our empirical results show that AlphaPruning prunes LLaMA-7B to 80% sparsity while maintaining reasonable perplexity, marking a first in the literature on LLMs. We have open-sourced our code at https://github.com/haiquanlu/AlphaPruning.
- Abstract(参考訳): 大規模言語モデル (LLM) のプルーニングに関する最近の研究により、性能を損なうことなく多数のパラメータを除去できることが示され、プルーニングはLLMモデルのサイズを減らすための有望な戦略となっている。
既存のLLMプルーニング戦略は、一般に層間の均一なプルーニング比を割り当て、全体のプルーニング能力を制限している。
本稿ではヘビータイド自己正則化(HT-SR)理論,特に重量行列の経験スペクトル密度(ESD)の形状を活用し,LLMの層状プルーニング比を改良した。
解析の結果, LLMの異なる層がいかによく訓練され, 関連性が高いかが明らかとなった。
そこで我々は,AlphaPruningを提案する。このAlphaPruningは,より理論的に原理化された方法で,層幅比を割り振る。
AlphaPruningは、既存の複数のLCMプルーニングメソッドと併用することができる。
実験の結果,AlphaPruning prunes LLaMA-7Bは80%の親和性を保ちながら,適切なパープレキシティを維持していることが明らかとなった。
コードをhttps://github.com/haiquanlu/AlphaPruning.comでオープンソース化しました。
関連論文リスト
- Pruning Foundation Models for High Accuracy without Retraining [48.256389781305415]
基礎モデルや大規模言語モデル(LLM)の展開は、膨大なパラメータと計算量のために困難である。
ワンショットでLLMを再訓練せずにプルーンする訓練後プルーニング法が提案されている。
本実験は,SOTAベースラインと比較して提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-21T01:23:34Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - ShortGPT: Layers in Large Language Models are More Redundant Than You Expect [38.148626520751385]
LLM(Large Language Models)の多くの層は高い類似性を示し、いくつかの層はネットワーク機能において無視できる役割を担っている。
レイヤ除去という,冗長なレイヤを直接削除する,簡単なプルーニング手法を提案する。
実験により,我々はShortGPT(ショートGPT)と呼ぶ手法を,モデルプルーニングにおける従来のSOTA(State-of-the-art)手法よりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2024-03-06T17:04:18Z) - Shortened LLaMA: Depth Pruning for Large Language Models with Comparison of Retraining Methods [5.135352292810664]
単純深度プルーニングは大規模言語モデル(LLM)を効果的に圧縮できることを示す。
我々のプルーニング法は、特にメモリ制約条件下での推論速度を向上する。
この作業がコンパクトで有能なLLMの構築に役立つことを願っています。
論文 参考訳(メタデータ) (2024-02-05T09:44:49Z) - One-Shot Sensitivity-Aware Mixed Sparsity Pruning for Large Language Models [42.95555008229016]
そこで本研究では, ヘッセン感度を意識した混合疎水性プルーニング法を, 再トレーニングを必要とせず, 最低50%の疎水性まで適用する方法を提案する。
提案手法の利点は, 空間が極めて高い場合にさらに顕著である。
論文 参考訳(メタデータ) (2023-10-14T05:43:09Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z) - Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity [88.62935593360162]
大規模言語モデル(LLM)は、様々な領域にわたる顕著なパフォーマンスで有名である。
本研究では,不均一層幅比の調整を施した新しいLCMプルーニング手法について紹介する。
OWL は、最先端の Wanda と SparseGPT を 61.22 で上回り、6.80 パープレキシティを 70% で上回っている。
論文 参考訳(メタデータ) (2023-10-08T14:22:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。