Characterization of Polariton Dynamics in a Multimode Cavity: Noise-enhanced Ballistic Expansion
- URL: http://arxiv.org/abs/2410.11051v1
- Date: Mon, 14 Oct 2024 19:58:00 GMT
- Title: Characterization of Polariton Dynamics in a Multimode Cavity: Noise-enhanced Ballistic Expansion
- Authors: Ilia Tutunnikov, Md Qutubuddin, H. R. Sadeghpour, Jianshu Cao,
- Abstract summary: We present a theoretical analysis of packet dynamics in a noisy emitter lattice embedded in a multi-mode microcavity.
We uncover a series of dynamic phenomena in both the noise-free and noisy cases.
This study paves the way for future experiments focused on light-matter interactions in complex systems.
- Score: 0.0
- License:
- Abstract: Advances in optical measurements enable precise tracking of cavity polariton dynamics with exceptional spatiotemporal resolution. Building on these developments, we present a comprehensive theoretical analysis of wave packet dynamics in a noisy emitter lattice embedded in a multi-mode microcavity. We uncover a series of dynamic phenomena in both the noise-free and noisy cases: (i) In the noise-free case, the emitters' probability density splits into two Gaussians whose group velocities are defined by the lower and upper polariton branches. (ii) Noise induces dephasing and leads to multiple dynamical stages with different time scales spanning several orders of magnitude. These stages include, in order of increasing duration: underdamped Rabi oscillations; damping of the center of mass velocity of the emitters' probability density; population thermalization; and the transition from the ballistic to the diffusive regimes of the probability density spreading. (iii) Most strikingly, dephasing enhances the ballistic spreading, which persists for several orders of magnitude longer than it does without a cavity. Some of our predictions align with recent experimental observations, while others can be tested in existing platforms. Understanding wave packet dynamics across multiple time scales in the presence of noise is crucial for optimizing polaritonic devices. This study paves the way for future experiments focused on light-matter interactions in complex systems.
Related papers
- Tachyonic and parametric instabilities in an extended bosonic Josephson Junction [0.0]
We study the dynamics and decay of quantum phase coherence for Bose-Einstein condensates in tunnel-coupled quantum wires.
We investigate the phenomenon of self-trapping in the relative population imbalance of the two condensates.
We discuss realistic parameters for experimental realizations of the $pi$-mode in ultracold atom setups.
arXiv Detail & Related papers (2024-10-14T14:22:49Z) - Dispersive shock waves in a one-dimensional droplet-bearing environment [7.370081795303041]
We demonstrate the controllable generation of distinct types of dispersive shock-waves emerging in a quantum droplet bearing environment.
Surprisingly, dispersive shock waves persist across the hyperbolic-to-elliptic threshold.
A plethora of additional wave patterns arise, such as rarefaction waves, traveling dispersive shock waves, (anti)kinks and droplet wavetrains.
arXiv Detail & Related papers (2024-04-03T18:39:57Z) - Dynamical quantum phase transitions following a noisy quench [0.0]
We study how time-dependent energy fluctuations impact the quantum phase transitions following a noisy quench of the transverse magnetic field in a quantum Ising chain.
We trace the phenomenon to the interplay between noise-induced excitations which accumulate during the quench and the nearadiabatic dynamics of the system.
arXiv Detail & Related papers (2023-10-20T07:56:47Z) - Dissipative Dynamics of Graph-State Stabilizers with Superconducting
Qubits [0.0]
We study the noisy evolution of multipartite entangled states, focusing on superconducting-qubit devices accessible via the cloud.
We introduce an approach modeling the charge-parity splitting using an extended Markovian environment.
We show that the underlying many-body dynamics generate decays and revivals of stabilizers, which are used extensively in the context of quantum error correction.
arXiv Detail & Related papers (2023-08-03T16:30:35Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.