Symmetries from outer automorphisms and unorthodox group extensions
- URL: http://arxiv.org/abs/2410.11052v1
- Date: Mon, 14 Oct 2024 19:59:22 GMT
- Title: Symmetries from outer automorphisms and unorthodox group extensions
- Authors: Christian Döring, Andreas Trautner,
- Abstract summary: Symmetries play an essential role in the construction and phenomenology of quantum field theories (QFTs)
We discuss how to construct symmetries of QFTs by extending minimal "seed" symmetry groups to larger groups that contain the seed as subgroup(s)
We show that all symmetry groups, including the different possible classes of CP and continuous symmetry groups, can be obtained from extensions of the smallest possible symmetry CP1 by consecutive outer automorphisms.
- Score: 0.0
- License:
- Abstract: Symmetries play an essential role in the construction and phenomenology of quantum field theories (QFTs). We discuss how to construct symmetries of QFTs by extending minimal "seed" symmetry groups to larger groups that contain the seed(s) as subgroup(s). On the one hand, there are so-called "normal" extensions, which are given by outer automorphisms of the original symmetry group (including the trivial one) and contain the seed as a normal subgroup. On the other hand, there can be "unorthodox extensions" which do not have this property. We demonstrate our logic on the most general scalar potentials of the two- and three-Higgs-doublet models (2HDM and 3HDM). For the 2HDM, we show that all symmetry groups, including the different possible classes of CP and continuous symmetry groups, can be obtained from extensions of the smallest possible symmetry CP1 by consecutive outer automorphisms. Scanning over normal and unorthodox group extensions might be the easiest way to "machine learn" the possible symmetries of a QFT. However, many of the groups constructible in this way may not be realizable in a concrete model, in the sense that they lead to additional accidental symmetries. Hence, we also comment on a different, "top-down" way to obtain the possible realizable symmetry groups of a QFT based on the covariant transformation of couplings under the most general basis changes.
Related papers
- Classifying symmetric and symmetry-broken spin chain phases with anomalous group actions [0.0]
We consider the classification problem of quantum spin chains invariant under local decomposable group actions.
We derive invariants for our classification that naturally cover one-dimensional symmetry protected topological phases.
arXiv Detail & Related papers (2024-03-27T13:54:45Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Clifford Group and Unitary Designs under Symmetry [0.0]
We prove that a symmetric Clifford group is a symmetric unitary 3-design if and only if the symmetry constraint is described by some Pauli subgroup.
We have also found a complete and unique construction method of symmetric Clifford groups with simple quantum gates for Pauli symmetries.
arXiv Detail & Related papers (2023-06-30T11:21:50Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Higher-group symmetry in finite gauge theory and stabilizer codes [3.8769921482808116]
A large class of gapped phases of matter can be described by topological finite group gauge theories.
We derive the $d$-group global symmetry and its 't Hooft anomaly for topological finite group gauge theories in $(d+1) space-time dimensions.
We discuss several applications, including the classification of fermionic SPT phases in (3+1)D for general fermionic symmetry groups.
arXiv Detail & Related papers (2022-11-21T19:00:00Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - Quantum Mechanics as a Theory of Incompatible Symmetries [77.34726150561087]
We show how classical probability theory can be extended to include any system with incompatible variables.
We show that any probabilistic system (classical or quantal) that possesses incompatible variables will show not only uncertainty, but also interference in its probability patterns.
arXiv Detail & Related papers (2022-05-31T16:04:59Z) - One-dimensional symmetric phases protected by frieze symmetries [0.0]
We make a systematic study of symmetry-protected topological gapped phases of quantum spin chains in the presence of the frieze space groups in one dimension using matrix product states.
We identify seventeen distinct non-trivial phases, define canonical forms, and compare the topological indices obtained from the MPS analysis with the group cohomological predictions.
arXiv Detail & Related papers (2022-02-25T18:41:26Z) - Constraints on Maximal Entanglement Under Groups of Permutations [73.21730086814223]
Sets of entanglements are inherently equal, lying in the same orbit under the group action.
We introduce new, generalized relationships for the maxima of those entanglement by exploiting the normalizer and normal subgroups of the physical symmetry group.
arXiv Detail & Related papers (2020-11-30T02:21:22Z) - Quasi-symmetry groups and many-body scar dynamics [13.95461883391858]
In quantum systems, a subspace spanned by degenerate eigenvectors of the Hamiltonian may have higher symmetries than those of the Hamiltonian itself.
When the group is a Lie group, an external field coupled to certain generators of the quasi-symmetry group lifts the degeneracy.
We provide two related schemes for constructing one-dimensional spin models having on-demand quasi-symmetry groups.
arXiv Detail & Related papers (2020-07-20T18:05:21Z) - Generalized string-nets for unitary fusion categories without
tetrahedral symmetry [77.34726150561087]
We present a general construction of the Levin-Wen model for arbitrary multiplicity-free unitary fusion categories.
We explicitly calculate the matrix elements of the Hamiltonian and, furthermore, show that it has the same properties as the original one.
arXiv Detail & Related papers (2020-04-15T12:21:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.