Determining Chess Game State From an Image
- URL: http://arxiv.org/abs/2104.14963v1
- Date: Fri, 30 Apr 2021 13:02:13 GMT
- Title: Determining Chess Game State From an Image
- Authors: Georg W\"olflein and Ognjen Arandjelovi\'c
- Abstract summary: This paper puts forth a new dataset synthesised from a 3D model that is an order of magnitude larger than existing ones.
A novel end-to-end chess recognition system is presented that combines traditional computer vision techniques with deep learning.
The described system achieves an error rate of 0.23% per square on the test set, 28 times better than the current state of the art.
- Score: 19.06796946564999
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying the configuration of chess pieces from an image of a chessboard
is a problem in computer vision that has not yet been solved accurately.
However, it is important for helping amateur chess players improve their games
by facilitating automatic computer analysis without the overhead of manually
entering the pieces. Current approaches are limited by the lack of large
datasets and are not designed to adapt to unseen chess sets. This paper puts
forth a new dataset synthesised from a 3D model that is an order of magnitude
larger than existing ones. Trained on this dataset, a novel end-to-end chess
recognition system is presented that combines traditional computer vision
techniques with deep learning. It localises the chessboard using a RANSAC-based
algorithm that computes a projective transformation of the board onto a regular
grid. Using two convolutional neural networks, it then predicts an occupancy
mask for the squares in the warped image and finally classifies the pieces. The
described system achieves an error rate of 0.23% per square on the test set, 28
times better than the current state of the art. Further, a few-shot transfer
learning approach is developed that is able to adapt the inference system to a
previously unseen chess set using just two photos of the starting position,
obtaining a per-square accuracy of 99.83% on images of that new chess set. The
dataset is released publicly; code and trained models are available at
https://github.com/georgw777/chesscog.
Related papers
- Predicting Chess Puzzle Difficulty with Transformers [0.0]
We present GlickFormer, a novel transformer-based architecture that predicts chess puzzle difficulty by approximating the Glicko-2 rating system.
The proposed model utilizes a modified ChessFormer backbone for spatial feature extraction and incorporates temporal information via factorized transformer techniques.
Results demonstrate GlickFormer's superior performance compared to the state-of-the-art ChessFormer baseline across multiple metrics.
arXiv Detail & Related papers (2024-10-14T20:39:02Z) - Amortized Planning with Large-Scale Transformers: A Case Study on Chess [11.227110138932442]
This paper uses chess, a landmark planning problem in AI, to assess performance on a planning task.
ChessBench is a large-scale benchmark of 10 million chess games with legal move and value annotations (15 billion points) provided by Stockfish.
We show that, although a remarkably good approximation can be distilled into large-scale transformers via supervised learning, perfect distillation is still beyond reach.
arXiv Detail & Related papers (2024-02-07T00:36:24Z) - Self-supervised Learning of LiDAR 3D Point Clouds via 2D-3D Neural Calibration [107.61458720202984]
This paper introduces a novel self-supervised learning framework for enhancing 3D perception in autonomous driving scenes.
We propose the learnable transformation alignment to bridge the domain gap between image and point cloud data.
We establish dense 2D-3D correspondences to estimate the rigid pose.
arXiv Detail & Related papers (2024-01-23T02:41:06Z) - Learning to Play Chess from Textbooks (LEAP): a Corpus for Evaluating
Chess Moves based on Sentiment Analysis [4.314956204483074]
This paper examines chess textbooks as a new knowledge source for enabling machines to learn how to play chess.
We developed the LEAP corpus, a first and new heterogeneous dataset with structured (chess move notations and board states) and unstructured data.
We performed empirical experiments that assess the performance of various transformer-based baseline models for sentiment analysis.
arXiv Detail & Related papers (2023-10-31T08:26:02Z) - End-to-End Chess Recognition [11.15543089335477]
Current approaches use a pipeline of separate, independent, modules such as chessboard detection, square localization, and piece classification.
We explore an end-to-end approach to directly predict the configuration from the image, thus avoiding the error accumulation of the sequential approaches.
In contrast to existing datasets that are synthetically rendered and have only limited angles, ChessReD has photographs captured from various angles using smartphone cameras.
Our approach in chess recognition on the introduced challenging benchmark dataset outperforms related approaches, successfully recognizing the chess pieces' configuration in 15.26% of ChessReD's test images.
arXiv Detail & Related papers (2023-10-06T08:30:20Z) - The Change You Want to See (Now in 3D) [65.61789642291636]
The goal of this paper is to detect what has changed, if anything, between two "in the wild" images of the same 3D scene.
We contribute a change detection model that is trained entirely on synthetic data and is class-agnostic.
We release a new evaluation dataset consisting of real-world image pairs with human-annotated differences.
arXiv Detail & Related papers (2023-08-21T01:59:45Z) - The Update-Equivalence Framework for Decision-Time Planning [78.44953498421854]
We introduce an alternative framework for decision-time planning that is not based on solving subgames, but rather on update equivalence.
We derive a provably sound search algorithm for fully cooperative games based on mirror descent and a search algorithm for adversarial games based on magnetic mirror descent.
arXiv Detail & Related papers (2023-04-25T20:28:55Z) - Learning 3D Representations from 2D Pre-trained Models via
Image-to-Point Masked Autoencoders [52.91248611338202]
We propose an alternative to obtain superior 3D representations from 2D pre-trained models via Image-to-Point Masked Autoencoders, named as I2P-MAE.
By self-supervised pre-training, we leverage the well learned 2D knowledge to guide 3D masked autoencoding.
I2P-MAE attains the state-of-the-art 90.11% accuracy, +3.68% to the second-best, demonstrating superior transferable capacity.
arXiv Detail & Related papers (2022-12-13T17:59:20Z) - No-Regret Learning in Time-Varying Zero-Sum Games [99.86860277006318]
Learning from repeated play in a fixed zero-sum game is a classic problem in game theory and online learning.
We develop a single parameter-free algorithm that simultaneously enjoys favorable guarantees under three performance measures.
Our algorithm is based on a two-layer structure with a meta-algorithm learning over a group of black-box base-learners satisfying a certain property.
arXiv Detail & Related papers (2022-01-30T06:10:04Z) - Back to the Feature: Learning Robust Camera Localization from Pixels to
Pose [114.89389528198738]
We introduce PixLoc, a scene-agnostic neural network that estimates an accurate 6-DoF pose from an image and a 3D model.
The system can localize in large environments given coarse pose priors but also improve the accuracy of sparse feature matching.
arXiv Detail & Related papers (2021-03-16T17:40:12Z) - LiveChess2FEN: a Framework for Classifying Chess Pieces based on CNNs [0.0]
We have implemented a functional framework that automatically digitizes a chess position from an image in less than 1 second.
We have analyzed different Convolutional Neural Networks for chess piece classification and how to map them efficiently on our embedded platform.
arXiv Detail & Related papers (2020-12-12T16:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.