論文の概要: CONSULT: Contrastive Self-Supervised Learning for Few-shot Tumor Detection
- arxiv url: http://arxiv.org/abs/2410.11307v1
- Date: Tue, 15 Oct 2024 06:09:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:02:19.159256
- Title: CONSULT: Contrastive Self-Supervised Learning for Few-shot Tumor Detection
- Title(参考訳): CONSULT:Few-shot腫瘍検出のためのコントラスト型自己監督学習
- Authors: Sin Chee Chin, Xuan Zhang, Lee Yeong Khang, Wenming Yang,
- Abstract要約: CONSULT(Contrastive Self-SUpervised Learning for few-shot tumor detection)と呼ばれる新しい2段階異常検出アルゴリズムを提案する。
CONSULTは、MRI脳画像に特化して訓練済みの機能抽出器を微調整し、合成データ生成パイプラインを使用して腫瘍のようなデータを生成する。
第1段階は、文脈対応コントラスト学習と自己監督型特徴逆学習を取り入れた高変量データの特徴抽出において、現在の異常検出の欠点を克服することである。
- 参考スコア(独自算出の注目度): 21.809270017579806
- License:
- Abstract: Artificial intelligence aids in brain tumor detection via MRI scans, enhancing the accuracy and reducing the workload of medical professionals. However, in scenarios with extremely limited medical images, traditional deep learning approaches tend to fail due to the absence of anomalous images. Anomaly detection also suffers from ineffective feature extraction due to vague training process. Our work introduces a novel two-stage anomaly detection algorithm called CONSULT (CONtrastive Self-sUpervised Learning for few-shot Tumor detection). The first stage of CONSULT fine-tunes a pre-trained feature extractor specifically for MRI brain images, using a synthetic data generation pipeline to create tumor-like data. This process overcomes the lack of anomaly samples and enables the integration of attention mechanisms to focus on anomalous image segments. The first stage is to overcome the shortcomings of current anomaly detection in extracting features in high-variation data by incorporating Context-Aware Contrastive Learning and Self-supervised Feature Adversarial Learning. The second stage of CONSULT uses PatchCore for conventional feature extraction via the fine-tuned weights from the first stage. To summarize, we propose a self-supervised training scheme for anomaly detection, enhancing model performance and data reliability. Furthermore, our proposed contrastive loss, Tritanh Loss, stabilizes learning by offering a unique solution all while enhancing gradient flow. Finally, CONSULT achieves superior performance in few-shot brain tumor detection, demonstrating significant improvements over PatchCore by 9.4%, 12.9%, 10.2%, and 6.0% for 2, 4, 6, and 8 shots, respectively, while training exclusively on healthy images.
- Abstract(参考訳): 人工知能はMRIスキャンによる脳腫瘍の検出を支援し、精度を高め、医療専門家の作業量を減らす。
しかし、医療画像が極めて限られているシナリオでは、従来のディープラーニングアプローチは異常な画像がないために失敗する傾向にある。
異常検出は、あいまいなトレーニングプロセスにより、非効率な特徴抽出にも悩まされる。
本研究では,2段階異常検出アルゴリズムCONSULT(Contrastive Self-SUpervised Learning for few-shot tumor detection)を提案する。
CONSULTの第1段階は、MRI脳画像に特化して訓練済みの特徴抽出器を微調整し、合成データ生成パイプラインを使用して腫瘍に似たデータを生成する。
このプロセスは異常サンプルの欠如を克服し、異常画像セグメントに注目する注意機構の統合を可能にする。
第1段階は、コンテキスト対応のコントラスト学習と自己監督型特徴適応学習を取り入れた高変量データの特徴抽出において、現在の異常検出の欠点を克服することである。
CONSULTの第2段では、第1段から微調整された重量による従来の特徴抽出にPatchCoreを使用している。
そこで本研究では,異常検出,モデル性能の向上,データの信頼性向上のための自己教師付きトレーニング手法を提案する。
さらに,Tritanh Lossは,勾配流を増大させながら,一意の解を提供することによって学習を安定させる。
最終的に、CONSULTは、数発の脳腫瘍検出において優れたパフォーマンスを達成し、健康な画像のみをトレーニングしながら、PatchCoreを9.4%、12.9%、10.2%、および6.0%で大幅に改善した。
関連論文リスト
- Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI [1.8420387715849447]
拡散確率モデル(DPM)はコンピュータビジョンタスクにおいて大きな効果を示した。
彼らの顕著なパフォーマンスはラベル付きデータセットに大きく依存しており、医療画像への適用を制限する。
本稿では,異なる特徴を取り入れた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-08T11:26:49Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
アルツハイマー病(英語: Alzheimer's disease、AD)は、老化に影響を及ぼす神経変性疾患である。
本稿では,自動特徴抽出とランダム森林のための畳み込みニューラルネットワークを利用する,効率的な早期融合(ELF)手法を提案する。
脳の容積の微妙な変化を検出するという課題に対処するために、画像をヤコビ領域(JD)に変換する。
論文 参考訳(メタデータ) (2023-10-25T19:02:57Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Deep Learning-Based Anomaly Detection in Synthetic Aperture Radar
Imaging [11.12267144061017]
本手法は,異常を周囲から逸脱する異常パターンとみなすが,その特徴を事前に把握していない。
提案手法は自己教師付きアルゴリズムを用いてこれらの問題に対処することを目的としている。
従来のReed-Xiaoliアルゴリズムと比較して,提案手法の利点を示す実験を行った。
論文 参考訳(メタデータ) (2022-10-28T10:22:29Z) - Evaluating U-net Brain Extraction for Multi-site and Longitudinal
Preclinical Stroke Imaging [0.4310985013483366]
畳み込みニューラルネットワーク(CNN)は精度を改善し、演算時間を短縮する。
U-net CNNを用いた深層学習マウス脳抽出ツールを開発した。
240のマルチモーダルMRIデータセット上で,典型的なU-netモデルをトレーニングし,検証し,テストした。
論文 参考訳(メタデータ) (2022-03-11T02:00:27Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Performance or Trust? Why Not Both. Deep AUC Maximization with
Self-Supervised Learning for COVID-19 Chest X-ray Classifications [72.52228843498193]
ディープラーニングモデルのトレーニングでは、パフォーマンスと信頼の間に妥協をしなければなりません。
本研究は、新型コロナウイルス患者のコンピュータ支援スクリーニングのための自己教師型学習と新しい代理損失を統合したものである。
論文 参考訳(メタデータ) (2021-12-14T21:16:52Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Brain Tumor Anomaly Detection via Latent Regularized Adversarial Network [34.81845999071626]
本稿では,脳腫瘍の異常検出アルゴリズムを提案する。
健常な(正常な)脳画像のみを訓練する半教師付き異常検出モデルが提案されている。
論文 参考訳(メタデータ) (2020-07-09T12:12:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。