論文の概要: Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation
- arxiv url: http://arxiv.org/abs/2410.11317v1
- Date: Tue, 15 Oct 2024 06:31:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:19.825699
- Title: Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation
- Title(参考訳): カオスの解読: 反逆的プロンプト翻訳によるジェイルブレイク攻撃の強化
- Authors: Qizhang Li, Xiaochen Yang, Wangmeng Zuo, Yiwen Guo,
- Abstract要約: そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
- 参考スコア(独自算出の注目度): 71.92055093709924
- License:
- Abstract: Automatic adversarial prompt generation provides remarkable success in jailbreaking safely-aligned large language models (LLMs). Existing gradient-based attacks, while demonstrating outstanding performance in jailbreaking white-box LLMs, often generate garbled adversarial prompts with chaotic appearance. These adversarial prompts are difficult to transfer to other LLMs, hindering their performance in attacking unknown victim models. In this paper, for the first time, we delve into the semantic meaning embedded in garbled adversarial prompts and propose a novel method that "translates" them into coherent and human-readable natural language adversarial prompts. In this way, we can effectively uncover the semantic information that triggers vulnerabilities of the model and unambiguously transfer it to the victim model, without overlooking the adversarial information hidden in the garbled text, to enhance jailbreak attacks. It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks. Experimental results demonstrate that our method significantly improves the success rate of jailbreak attacks against various safety-aligned LLMs and outperforms state-of-the-arts by large margins. With at most 10 queries, our method achieves an average attack success rate of 81.8% in attacking 7 commercial closed-source LLMs, including GPT and Claude-3 series, on HarmBench. Our method also achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks. Code at: https://github.com/qizhangli/Adversarial-Prompt-Translator.
- Abstract(参考訳): 自動対向プロンプト生成は、安全に整列された大言語モデル(LLM)をジェイルブレイクで成功させる。
既存の勾配に基づく攻撃は、脱獄する白い箱のLSMにおいて顕著な性能を示しつつも、しばしば混乱した外観の逆転プロンプトを発生させる。
これらの敵のプロンプトは他のLLMへの転送が困難であり、未知の犠牲者モデルを攻撃する際の性能を妨げている。
本稿では, 初めて, ニンブレントな逆数プロンプトに埋め込まれた意味を探求し, それらを「一貫性のある, 可読な自然言語の逆数プロンプトに翻訳する」新しい手法を提案する。
このようにして、我々はモデルの脆弱性を誘発する意味情報を効果的に発見し、それを被害者のモデルに不明瞭に転送することができる。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
実験結果から, 脱獄攻撃の安全性が向上し, 最先端技術よりも高い結果が得られた。
提案手法は,少なくとも10のクエリで,HarmBench上でのGPTおよびClaude-3シリーズを含む7つの商用クローズドソースLCMの攻撃における平均攻撃成功率81.8%を達成する。
また,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%を超えている。
コードネームはhttps://github.com/qizhangli/Adversarial-Prompt-Translator。
関連論文リスト
- Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models [0.0]
我々は,様々なLSM-as-Attackerメソッドを組み込んだ新しいブラックボックス・ジェイルブレイク攻撃フレームワークを提案する。
本手法は,既存のジェイルブレイク研究と実践から得られた3つの重要な知見に基づいて設計されている。
論文 参考訳(メタデータ) (2024-10-31T01:55:33Z) - Effective and Evasive Fuzz Testing-Driven Jailbreaking Attacks against LLMs [33.87649859430635]
大規模言語モデル(LLM)は様々なタスクに優れていますが、それでも脱獄攻撃に対して脆弱です。
我々は,ブラックボックスファジテストのアプローチを,一連のカスタマイズされた設計で適応させる新しいジェイルブレイク攻撃フレームワークを提案する。
攻撃成功率は90%,80%,74%以上であり,既存のベースラインを60%以上越えている。
論文 参考訳(メタデータ) (2024-09-23T10:03:09Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
本稿では,テキストと視覚のプロンプトを協調的に最適化することにより,ジェイルブレイクを実行するバイモーダル・アドバイサル・プロンプト・アタック(BAP)を提案する。
特に,大規模言語モデルを用いてジェイルブレイクの失敗を分析し,テキストのプロンプトを洗練させるために連鎖推論を採用する。
論文 参考訳(メタデータ) (2024-06-06T13:00:42Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z) - All in How You Ask for It: Simple Black-Box Method for Jailbreak Attacks [0.0]
本研究では,ジェイルブレイクプロンプトを効率的に作成するための簡単なブラックボックス手法を提案する。
本手法は有害なプロンプトを目的のLSMを直接利用した良性表現に反復的に変換する。
提案手法は, 平均5回の質問に対して, 80%以上の攻撃成功率を達成した。
論文 参考訳(メタデータ) (2024-01-18T08:36:54Z) - AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large
Language Models [55.748851471119906]
LLM(Large Language Models)の安全性の整合性は、手動のジェイルブレイク攻撃や(自動)敵攻撃によって損なわれる可能性がある。
最近の研究は、これらの攻撃に対する防御が可能であることを示唆している。敵攻撃は無限だが読めないジベリッシュプロンプトを生成し、難易度に基づくフィルタによって検出できる。
両攻撃の強度をマージする,解釈可能な勾配に基づく対向攻撃であるAutoDANを導入する。
論文 参考訳(メタデータ) (2023-10-23T17:46:07Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
本稿では,大規模言語モデルに対する新たなジェイルブレイク攻撃であるAutoDANを紹介する。
AutoDANは、慎重に設計された階層型遺伝的アルゴリズムによって、ステルスなジェイルブレイクプロンプトを自動的に生成できる。
論文 参考訳(メタデータ) (2023-10-03T19:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。