論文の概要: Diffusion-Based Offline RL for Improved Decision-Making in Augmented ARC Task
- arxiv url: http://arxiv.org/abs/2410.11324v1
- Date: Tue, 15 Oct 2024 06:48:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:26.641526
- Title: Diffusion-Based Offline RL for Improved Decision-Making in Augmented ARC Task
- Title(参考訳): 拡張ARCタスクにおけるディフュージョンベースオフラインRLによる意思決定の改善
- Authors: Yunho Kim, Jaehyun Park, Heejun Kim, Sejin Kim, Byung-Jun Lee, Sundong Kim,
- Abstract要約: SOLAR(Abstraction and Reasoning)のための拡張オフラインRLデータセットを提案する。
SOLARは、十分な経験データを提供することで、オフラインのRLメソッドの適用を可能にする。
本実験は, 簡単なARCタスクにおけるオフラインRL手法の有効性を実証する。
- 参考スコア(独自算出の注目度): 10.046325073900297
- License:
- Abstract: Effective long-term strategies enable AI systems to navigate complex environments by making sequential decisions over extended horizons. Similarly, reinforcement learning (RL) agents optimize decisions across sequences to maximize rewards, even without immediate feedback. To verify that Latent Diffusion-Constrained Q-learning (LDCQ), a prominent diffusion-based offline RL method, demonstrates strong reasoning abilities in multi-step decision-making, we aimed to evaluate its performance on the Abstraction and Reasoning Corpus (ARC). However, applying offline RL methodologies to enhance strategic reasoning in AI for solving tasks in ARC is challenging due to the lack of sufficient experience data in the ARC training set. To address this limitation, we introduce an augmented offline RL dataset for ARC, called Synthesized Offline Learning Data for Abstraction and Reasoning (SOLAR), along with the SOLAR-Generator, which generates diverse trajectory data based on predefined rules. SOLAR enables the application of offline RL methods by offering sufficient experience data. We synthesized SOLAR for a simple task and used it to train an agent with the LDCQ method. Our experiments demonstrate the effectiveness of the offline RL approach on a simple ARC task, showing the agent's ability to make multi-step sequential decisions and correctly identify answer states. These results highlight the potential of the offline RL approach to enhance AI's strategic reasoning capabilities.
- Abstract(参考訳): 効果的な長期戦略により、AIシステムは、拡張された地平線上でシーケンシャルな決定を行うことで、複雑な環境をナビゲートすることができる。
同様に、強化学習(RL)エージェントは、即座にフィードバックしなくても報酬を最大化するためにシーケンス全体の決定を最適化する。
拡散型オフラインRL法であるLDCQ(Latent Diffusion-Constrained Q-learning)が多段階意思決定において強い推論能力を示すことを検証するため,ARC(Abstraction and Reasoning Corpus)の性能評価を目的とした。
しかし、ARCのタスクを解くためにAIの戦略的推論を強化するためにオフラインのRL手法を適用することは、ARCトレーニングセットに十分な経験データがないために困難である。
この制限に対処するために、我々はSOLAR(Synthesized Offline Learning Data for Abstraction and Reasoning)と呼ばれるARC用の拡張オフラインRLデータセットと、事前定義されたルールに基づいて多様な軌跡データを生成するSOLAR-Generatorを導入する。
SOLARは、十分な経験データを提供することで、オフラインのRLメソッドの適用を可能にする。
簡単なタスクでSOLARを合成し,LCDQ法によるエージェントの訓練に利用した。
実験では, エージェントが複数段階の逐次決定を行い, 応答状態を正確に識別する能力を示す。
これらの結果は、AIの戦略的推論能力を強化するためのオフラインRLアプローチの可能性を強調している。
関連論文リスト
- Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
オフラインデータセットのための高品質な仮想トラジェクトリを生成するために拡散モデルを導入し,PPOアルゴリズムを強化するフレームワークを提案する。
RLにおける拡散モデルの可能性、特にオフラインデータセットについて検討し、オンラインRLをオフライン環境に拡張し、拡散モデルによるPPOの性能改善を実験的に検証する。
論文 参考訳(メタデータ) (2024-09-02T19:10:32Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
ロボット操作と移動環境の現実的なシミュレーションに焦点を当てたオフラインRLのための新しいベンチマークを提案する。
提案するベンチマークでは、状態ベースドメインと画像ベースドメインを対象とし、オフラインRLとオンライン微調整評価の両方をサポートしている。
論文 参考訳(メタデータ) (2024-08-15T22:27:00Z) - GuideLight: "Industrial Solution" Guidance for More Practical Traffic Signal Control Agents [12.497518428553734]
強化学習(RL)に基づく交通信号制御(TSC)法は,従来の手法よりも優れていることが証明されている。
しかし、ほとんどのRL法は、入力、出力、サイクル-フロー関係という3つの要因により、実世界で適用した場合に困難に直面している。
我々は、RLエージェントをガイドする業界ソリューションを提案する。
論文 参考訳(メタデータ) (2024-07-15T15:26:10Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Explaining RL Decisions with Trajectories [28.261758841898697]
説明は、実世界の意思決定問題における強化学習(RL)導入の鍵となる要素である。
本稿では、これらの説明に対する補完的アプローチ、特にオフラインRLについて、トレーニング中に遭遇した軌跡に、訓練されたRLエージェントの政策決定を関連付けることを提案する。
論文 参考訳(メタデータ) (2023-05-06T15:26:22Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
状態表現学習(SRL)は,複雑な感覚データからタスク関連特徴を低次元状態に符号化する。
我々は、SRLの解釈を改善するために、専門家のデモンストレーションを活用するために、ドメイン類似と呼ばれる新しいSRLを導入する。
我々はPOARを実証的に検証し、高次元のタスクを効率的に処理し、スクラッチから直接実生活ロボットの訓練を容易にする。
論文 参考訳(メタデータ) (2021-09-17T16:52:03Z) - Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
and Survey [0.7366405857677226]
強化学習(Reinforcement Learning, RL)法は、ブロードXAIの開発に必要な認知モデルのための潜在的なバックボーンを提供する。
RLは、さまざまなシーケンシャルな意思決定問題の解決に成功している一連のアプローチである。
本稿では,現在のXRL研究を統一し,Broad-XAI開発のバックボーンとしてRLを用いるCausal XRL Framework (CXF) という概念的フレームワークを導入することを目的とする。
論文 参考訳(メタデータ) (2021-08-20T05:18:50Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
オフライン強化学習(RL)とは、環境相互作用の静的データセットからポリシーを学習する問題を指します。
オフラインRLのためのモデルベースアルゴリズムの最近の進歩の上に構築し、それらを高次元の視覚観測空間に拡張する。
提案手法は, 実測可能であり, 未知のPOMDPにおけるELBOの下限の最大化に対応している。
論文 参考訳(メタデータ) (2020-12-21T18:28:17Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
相対エントロピーQラーニング(Relative Entropy Q-Learning、REQ)は、オフラインおよび従来のRLアルゴリズムのアイデアを組み合わせた単純なポリシーアルゴリズムである。
本稿では、REQが、デモから一般の政治外RL、オフラインRL、およびRLにどのように有効であるかを示す。
論文 参考訳(メタデータ) (2020-10-16T18:48:49Z) - EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline
and Online RL [48.552287941528]
オフ・ポリティクス強化学習は、意思決定ポリシーのサンプル効率の学習を約束する。
オフラインのRL設定では、標準のオフポリシーのRLメソッドは大幅に性能が低下する。
本稿では,提案アルゴリズムとより密接な関係を持つ期待値Q-Learning(EMaQ)を提案する。
論文 参考訳(メタデータ) (2020-07-21T21:13:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。