論文の概要: SeaDATE: Remedy Dual-Attention Transformer with Semantic Alignment via Contrast Learning for Multimodal Object Detection
- arxiv url: http://arxiv.org/abs/2410.11358v1
- Date: Tue, 15 Oct 2024 07:26:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:02:18.453315
- Title: SeaDATE: Remedy Dual-Attention Transformer with Semantic Alignment via Contrast Learning for Multimodal Object Detection
- Title(参考訳): SeaDATE:マルチモーダル物体検出のためのコントラスト学習によるセマンティックアライメント付き2値変換器
- Authors: Shuhan Dong, Yunsong Li, Weiying Xie, Jiaqing Zhang, Jiayuan Tian, Danian Yang, Jie Lei,
- Abstract要約: マルチモーダルオブジェクト検出は、様々なモーダル情報を活用して、検出器の精度と堅牢性を高める。
現在の方法では、トランスフォーマー誘導核融合技術は、ネットワークの様々な深さ層における特徴を抽出する能力を探ることなく、単純にスタック化されている。
本論文では,SeaDATEと呼ばれる高精度かつ効率的な物体検出手法を提案する。
- 参考スコア(独自算出の注目度): 18.090706979440334
- License:
- Abstract: Multimodal object detection leverages diverse modal information to enhance the accuracy and robustness of detectors. By learning long-term dependencies, Transformer can effectively integrate multimodal features in the feature extraction stage, which greatly improves the performance of multimodal object detection. However, current methods merely stack Transformer-guided fusion techniques without exploring their capability to extract features at various depth layers of network, thus limiting the improvements in detection performance. In this paper, we introduce an accurate and efficient object detection method named SeaDATE. Initially, we propose a novel dual attention Feature Fusion (DTF) module that, under Transformer's guidance, integrates local and global information through a dual attention mechanism, strengthening the fusion of modal features from orthogonal perspectives using spatial and channel tokens. Meanwhile, our theoretical analysis and empirical validation demonstrate that the Transformer-guided fusion method, treating images as sequences of pixels for fusion, performs better on shallow features' detail information compared to deep semantic information. To address this, we designed a contrastive learning (CL) module aimed at learning features of multimodal samples, remedying the shortcomings of Transformer-guided fusion in extracting deep semantic features, and effectively utilizing cross-modal information. Extensive experiments and ablation studies on the FLIR, LLVIP, and M3FD datasets have proven our method to be effective, achieving state-of-the-art detection performance.
- Abstract(参考訳): マルチモーダルオブジェクト検出は、様々なモーダル情報を活用して、検出器の精度と堅牢性を高める。
長期的な依存関係を学習することで、Transformerは機能抽出段階においてマルチモーダル機能を効果的に統合し、マルチモーダルオブジェクト検出の性能を大幅に向上させることができる。
しかし、現在の方法では、トランスフォーマー誘導型核融合技術は、ネットワークの様々な深さ層における特徴を抽出する能力を探ることなく、単純にスタック化されているため、検出性能の向上が制限される。
本論文では,SeaDATEと呼ばれる高精度かつ効率的な物体検出手法を提案する。
当初,Transformer の指導のもと,デュアルアテンション機構を通じて局所情報とグローバル情報を統合し,空間およびチャネルトークンを用いた直交的視点からのモーダル特徴の融合を強化する,新しいデュアルアテンション・フィーチャー・フュージョン (DTF) モジュールを提案する。
一方,我々の理論的解析と実証的検証により,画像を融合用画素のシーケンスとして扱うTransformer-Guided fusion法は,深い意味情報よりも浅い特徴の詳細な情報の方が優れていることが示された。
そこで我々は,マルチモーダルサンプルの特徴を学習するためのコントラスト学習(CL)モジュールを設計し,深い意味的特徴の抽出におけるトランスフォーマー誘導融合の欠点を修復し,クロスモーダル情報を有効に活用する。
FLIR,LLVIP,M3FDデータセットの大規模な実験とアブレーション実験により,本手法が有効であることが証明され,最先端検出性能が達成された。
関連論文リスト
- Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
本論文は、任意のモーダリティ・サリエント物体検出(AM SOD)の課題について述べる。
任意のモダリティ、例えばRGBイメージ、RGB-Dイメージ、RGB-D-Tイメージから有能なオブジェクトを検出することを目的としている。
AM SODの2つの基本的な課題を解明するために,新しいモード適応トランス (MAT) を提案する。
論文 参考訳(メタデータ) (2024-05-06T11:02:02Z) - E2E-MFD: Towards End-to-End Synchronous Multimodal Fusion Detection [21.185032466325737]
マルチモーダル核融合検出のための新しいエンドツーエンドアルゴリズムであるE2E-MFDを紹介する。
E2E-MFDはプロセスの合理化を図り、単一のトレーニングフェーズで高いパフォーマンスを達成する。
複数の公開データセットに対する広範なテストは、E2E-MFDの優れた機能を明らかにします。
論文 参考訳(メタデータ) (2024-03-14T12:12:17Z) - From Text to Pixels: A Context-Aware Semantic Synergy Solution for
Infrared and Visible Image Fusion [66.33467192279514]
我々は、テキスト記述から高レベルなセマンティクスを活用し、赤外線と可視画像のセマンティクスを統合するテキスト誘導多モード画像融合法を提案する。
本手法は,視覚的に優れた融合結果を生成するだけでなく,既存の手法よりも高い検出mAPを達成し,最先端の結果を得る。
論文 参考訳(メタデータ) (2023-12-31T08:13:47Z) - CT-MVSNet: Efficient Multi-View Stereo with Cross-scale Transformer [8.962657021133925]
クロススケールトランス(CT)プロセスは、追加計算なしで異なる段階の表現を特徴付ける。
複数のスケールで異なる対話型アテンションの組み合わせを利用する適応型マッチング認識変換器(AMT)を導入する。
また、より細かなコストボリューム構成に大まかにグローバルな意味情報を埋め込む2機能ガイドアグリゲーション(DFGA)も提案する。
論文 参考訳(メタデータ) (2023-12-14T01:33:18Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
マルチモーダル融合は、複数のモーダルからのデータを融合することで精度を高めることが決定されている。
早期に異なるチャネル間の関係をマッピングするための新しいマルチモーダル融合戦略を提案する。
本手法は,中期・後期の手法とは対照的に,早期の融合に対処することにより,既存の手法と比較して,競争力や性能に優れる。
論文 参考訳(メタデータ) (2023-10-21T00:56:11Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - ICAFusion: Iterative Cross-Attention Guided Feature Fusion for
Multispectral Object Detection [25.66305300362193]
大域的特徴相互作用をモデル化するために、二重対向変換器の新たな特徴融合フレームワークを提案する。
このフレームワークは、クエリ誘導のクロスアテンション機構を通じて、オブジェクトの特徴の識別性を高める。
提案手法は,様々なシナリオに適した性能と高速な推論を実現する。
論文 参考訳(メタデータ) (2023-08-15T00:02:10Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
MLF-DETと呼ばれる,高性能なクロスモーダル3DオブジェクトDrectionのための,新規かつ効果的なマルチレベルフュージョンネットワークを提案する。
特徴レベルの融合では、マルチスケールのボクセル特徴と画像の特徴を密集したマルチスケールのボクセル画像融合(MVI)モジュールを提示する。
本稿では,画像のセマンティクスを利用して検出候補の信頼度を補正するFCR(Feature-cued Confidence Rectification)モジュールを提案する。
論文 参考訳(メタデータ) (2023-07-18T11:26:02Z) - Transformer-based Network for RGB-D Saliency Detection [82.6665619584628]
RGB-Dサリエンシ検出の鍵は、2つのモードにわたる複数のスケールで情報を完全なマイニングとヒューズすることである。
コンバータは機能融合と機能拡張の両面において高い有効性を示す一様操作であることを示す。
提案するネットワークは,最先端のRGB-D値検出手法に対して良好に動作する。
論文 参考訳(メタデータ) (2021-12-01T15:53:58Z) - Cross-Modality Fusion Transformer for Multispectral Object Detection [0.0]
マルチスペクトル画像ペアは、組み合わせた情報を提供し、オブジェクト検出アプリケーションがより信頼性が高く、堅牢になる。
本論文では,CFT (Cross-Modality Fusion Transformer) という,単純かつ効果的なクロスモーダル機能融合手法を提案する。
論文 参考訳(メタデータ) (2021-10-30T15:34:12Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。