LEMON: Learning 3D Human-Object Interaction Relation from 2D Images
- URL: http://arxiv.org/abs/2312.08963v2
- Date: Sun, 31 Mar 2024 02:18:23 GMT
- Title: LEMON: Learning 3D Human-Object Interaction Relation from 2D Images
- Authors: Yuhang Yang, Wei Zhai, Hongchen Luo, Yang Cao, Zheng-Jun Zha,
- Abstract summary: Learning 3D human-object interaction relation is pivotal to embodied AI and interaction modeling.
Most existing methods approach the goal by learning to predict isolated interaction elements.
We present LEMON, a unified model that mines interaction intentions of the counterparts and employs curvatures to guide the extraction of geometric correlations.
- Score: 56.6123961391372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning 3D human-object interaction relation is pivotal to embodied AI and interaction modeling. Most existing methods approach the goal by learning to predict isolated interaction elements, e.g., human contact, object affordance, and human-object spatial relation, primarily from the perspective of either the human or the object. Which underexploit certain correlations between the interaction counterparts (human and object), and struggle to address the uncertainty in interactions. Actually, objects' functionalities potentially affect humans' interaction intentions, which reveals what the interaction is. Meanwhile, the interacting humans and objects exhibit matching geometric structures, which presents how to interact. In light of this, we propose harnessing these inherent correlations between interaction counterparts to mitigate the uncertainty and jointly anticipate the above interaction elements in 3D space. To achieve this, we present LEMON (LEarning 3D huMan-Object iNteraction relation), a unified model that mines interaction intentions of the counterparts and employs curvatures to guide the extraction of geometric correlations, combining them to anticipate the interaction elements. Besides, the 3D Interaction Relation dataset (3DIR) is collected to serve as the test bed for training and evaluation. Extensive experiments demonstrate the superiority of LEMON over methods estimating each element in isolation.
Related papers
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - InterDiff: Generating 3D Human-Object Interactions with Physics-Informed
Diffusion [29.25063155767897]
This paper addresses a novel task of anticipating 3D human-object interactions (HOIs)
Our task is significantly more challenging, as it requires modeling dynamic objects with various shapes, capturing whole-body motion, and ensuring physically valid interactions.
Experiments on multiple human-object interaction datasets demonstrate the effectiveness of our method for this task, capable of producing realistic, vivid, and remarkably long-term 3D HOI predictions.
arXiv Detail & Related papers (2023-08-31T17:59:08Z) - HODN: Disentangling Human-Object Feature for HOI Detection [51.48164941412871]
We propose a Human and Object Disentangling Network (HODN) to model the Human-Object Interaction (HOI) relationships explicitly.
Considering that human features are more contributive to interaction, we propose a Human-Guide Linking method to make sure the interaction decoder focuses on the human-centric regions.
Our proposed method achieves competitive performance on both the V-COCO and the HICO-Det Linking datasets.
arXiv Detail & Related papers (2023-08-20T04:12:50Z) - Full-Body Articulated Human-Object Interaction [61.01135739641217]
CHAIRS is a large-scale motion-captured f-AHOI dataset consisting of 16.2 hours of versatile interactions.
CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process.
By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation.
arXiv Detail & Related papers (2022-12-20T19:50:54Z) - Reconstructing Action-Conditioned Human-Object Interactions Using
Commonsense Knowledge Priors [42.17542596399014]
We present a method for inferring diverse 3D models of human-object interactions from images.
Our method extracts high-level commonsense knowledge from large language models.
We quantitatively evaluate the inferred 3D models on a large human-object interaction dataset.
arXiv Detail & Related papers (2022-09-06T13:32:55Z) - Compositional Human-Scene Interaction Synthesis with Semantic Control [16.93177243590465]
We aim to synthesize humans interacting with a given 3D scene controlled by high-level semantic specifications.
We design a novel transformer-based generative model, in which the articulated 3D human body surface points and 3D objects are jointly encoded.
Inspired by the compositional nature of interactions that humans can simultaneously interact with multiple objects, we define interaction semantics as the composition of varying numbers of atomic action-object pairs.
arXiv Detail & Related papers (2022-07-26T11:37:44Z) - Object Properties Inferring from and Transfer for Human Interaction
Motions [51.896592493436984]
In this paper, we present a fine-grained action recognition method that learns to infer object properties from human interaction motion alone.
We collect a large number of videos and 3D skeletal motions of the performing actors using an inertial motion capture device.
In particular, we learn to identify the interacting object, by estimating its weight, or its fragility or delicacy.
arXiv Detail & Related papers (2020-08-20T14:36:34Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
We propose a novel fully-convolutional approach that directly detects the interactions between human-object pairs.
Our network predicts interaction points, which directly localize and classify the inter-action.
Experiments are performed on two popular benchmarks: V-COCO and HICO-DET.
arXiv Detail & Related papers (2020-03-31T08:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.