論文の概要: Enhancing Unimodal Latent Representations in Multimodal VAEs through Iterative Amortized Inference
- arxiv url: http://arxiv.org/abs/2410.11403v1
- Date: Tue, 15 Oct 2024 08:49:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:03:36.309474
- Title: Enhancing Unimodal Latent Representations in Multimodal VAEs through Iterative Amortized Inference
- Title(参考訳): 反復的補正推論によるマルチモーダルVAEにおける一様潜在表現の強化
- Authors: Yuta Oshima, Masahiro Suzuki, Yutaka Matsuo,
- Abstract要約: マルチモーダル変分オートエンコーダ(VAE)は、異なるデータモダリティからの情報を統合することで、共有潜在表現をキャプチャすることを目的としている。
重要な課題は、あらゆる可能なモダリティの組み合わせに対して、非現実的な数の推論ネットワークを訓練することなく、任意のモダリティのサブセットから正確に表現を推論することである。
本稿では,マルチモーダルVAEフレームワーク内での反復的改善機構であるマルチモーダル反復補正推論を導入する。
- 参考スコア(独自算出の注目度): 20.761803725098005
- License:
- Abstract: Multimodal variational autoencoders (VAEs) aim to capture shared latent representations by integrating information from different data modalities. A significant challenge is accurately inferring representations from any subset of modalities without training an impractical number (2^M) of inference networks for all possible modality combinations. Mixture-based models simplify this by requiring only as many inference models as there are modalities, aggregating unimodal inferences. However, they suffer from information loss when modalities are missing. Alignment-based VAEs address this by aligning unimodal inference models with a multimodal model through minimizing the Kullback-Leibler (KL) divergence but face issues due to amortization gaps, which compromise inference accuracy. To tackle these problems, we introduce multimodal iterative amortized inference, an iterative refinement mechanism within the multimodal VAE framework. This method overcomes information loss from missing modalities and minimizes the amortization gap by iteratively refining the multimodal inference using all available modalities. By aligning unimodal inference to this refined multimodal posterior, we achieve unimodal inferences that effectively incorporate multimodal information while requiring only unimodal inputs during inference. Experiments on benchmark datasets show that our approach improves inference performance, evidenced by higher linear classification accuracy and competitive cosine similarity, and enhances cross-modal generation, indicated by lower FID scores. This demonstrates that our method enhances inferred representations from unimodal inputs.
- Abstract(参考訳): マルチモーダル変分オートエンコーダ(VAE)は、異なるデータモダリティからの情報を統合することで、共有潜在表現をキャプチャすることを目的としている。
重要な課題は、あらゆる可能なモダリティ結合に対する推論ネットワークの非現実的な数(2^M)を訓練することなく、任意のモダリティの部分集合から正確に表現を推論することである。
混合ベースのモデルは、モダリティがある限り多くの推論モデルを必要とし、非モダル推論を集約することでこれを単純化する。
しかし、モダリティが欠落すると情報損失に悩まされる。
アライメントベースのVAEは、Kullback-Leibler(KL)の発散を最小限にして、単調推論モデルとマルチモーダルモデルとを合わせることでこの問題に対処する。
これらの問題に対処するために,マルチモーダルVAEフレームワーク内の反復的改善機構であるマルチモーダル反復補正推論を導入する。
この方法は、欠落したモダリティからの情報損失を克服し、利用可能なすべてのモダリティを用いてマルチモーダル推論を反復的に精製することにより、アモータイズギャップを最小化する。
この改良された多モーダル後部への単モーダル推論を整列させることにより、単モーダル入力のみを必要としながら、多モーダル情報を効果的に組み込んだ単モーダル推論を実現する。
ベンチマークデータセットを用いた実験により, 線形分類精度と競合コサイン類似性によって証明された推論性能が向上し, FIDスコアが低い場合のクロスモーダル生成が向上することが示された。
このことは,本手法が不定形入力からの推論表現を強化することを証明している。
関連論文リスト
- Mutual Information-based Representations Disentanglement for Unaligned Multimodal Language Sequences [25.73415065546444]
不整合多モーダル言語列の鍵となる課題は、様々なモーダルからの情報を統合して洗練された多モーダル関節表現を得ることである。
非整合多モーダル言語系列に対する相互情報に基づく表現不整合(MIRD)手法を提案する。
論文 参考訳(メタデータ) (2024-09-19T02:12:26Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
実世界のシナリオでは、完全なマルチモーダルデータを一貫して取得することは重大な課題である。
これはしばしば、特定のモダリティのデータが欠落しているモダリティの問題につながる。
自己教師型共同埋め込み学習手法を用いて, パラメータ効率のよい未学習モデルの微調整を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T14:44:25Z) - Robust Multimodal Learning via Representation Decoupling [6.7678581401558295]
マルチモーダル学習はその実用性から注目を集めている。
既存の手法は、異なるモダリティの組み合わせに対して共通の部分空間表現を学習することで、この問題に対処する傾向がある。
本稿では,頑健なマルチモーダル学習を支援するために,DMRNet(Decoupled Multimodal Representation Network)を提案する。
論文 参考訳(メタデータ) (2024-07-05T12:09:33Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
ラベル付き単調データのみを用いた半教師付き環境における相互作用定量化の課題について検討する。
相互作用の正確な情報理論的定義を用いて、我々の重要な貢献は下界と上界の導出である。
本稿では、これらの理論結果を用いてマルチモーダルモデルの性能を推定し、データ収集をガイドし、様々なタスクに対して適切なマルチモーダルモデルを選択する方法について述べる。
論文 参考訳(メタデータ) (2023-06-07T15:44:53Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z) - Correlation Information Bottleneck: Towards Adapting Pretrained
Multimodal Models for Robust Visual Question Answering [63.87200781247364]
相関情報ボトルネック (CIB) は圧縮と表現の冗長性のトレードオフを求める。
マルチモーダル入力と表現の相互情報に対して,理論上界を厳密に導出する。
論文 参考訳(メタデータ) (2022-09-14T22:04:10Z) - Multi-Modal Mutual Information Maximization: A Novel Approach for
Unsupervised Deep Cross-Modal Hashing [73.29587731448345]
我々はCross-Modal Info-Max Hashing (CMIMH)と呼ばれる新しい手法を提案する。
モーダル内およびモーダル間の類似性を両立できる情報表現を学習する。
提案手法は、他の最先端のクロスモーダル検索手法よりも一貫して優れている。
論文 参考訳(メタデータ) (2021-12-13T08:58:03Z) - Discriminative Multimodal Learning via Conditional Priors in Generative
Models [21.166519800652047]
本研究は,モデルトレーニングにおいて,すべてのモダリティとクラスラベルが利用できる現実的なシナリオについて研究する。
このシナリオでは、変動的な下界境界は、結合表現と欠測モダリティの間の相互情報を制限する。
論文 参考訳(メタデータ) (2021-10-09T17:22:24Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) は、2対のモダリティ表現で融合を行う新しいエンドツーエンドネットワークである。
モデルは、モダリティ間の既知の情報不均衡により、2つのバイモーダルペアを入力として取る。
論文 参考訳(メタデータ) (2021-07-28T23:33:42Z) - Robust Latent Representations via Cross-Modal Translation and Alignment [36.67937514793215]
ほとんどのマルチモーダル機械学習手法では、トレーニングに使用されるすべてのモダリティをテストに利用する必要がある。
この制限に対処するため、トレーニング中のみに複数のモーダルを用いてユニモーダルシステムのテスト性能を向上させることを目的としている。
提案するマルチモーダルトレーニングフレームワークは、クロスモーダル変換と相関に基づく潜在空間アライメントを用いる。
論文 参考訳(メタデータ) (2020-11-03T11:18:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。