A Case for AI Consciousness: Language Agents and Global Workspace Theory
- URL: http://arxiv.org/abs/2410.11407v1
- Date: Tue, 15 Oct 2024 08:50:45 GMT
- Title: A Case for AI Consciousness: Language Agents and Global Workspace Theory
- Authors: Simon Goldstein, Cameron Domenico Kirk-Giannini,
- Abstract summary: We argue that instances of one widely implemented AI architecture, the artificial language agent, might easily be made phenomenally conscious if they are not already.
Along the way, we articulate an explicit methodology for thinking about how to apply scientific theories of consciousness to artificial systems.
- Score: 0.0
- License:
- Abstract: It is generally assumed that existing artificial systems are not phenomenally conscious, and that the construction of phenomenally conscious artificial systems would require significant technological progress if it is possible at all. We challenge this assumption by arguing that if Global Workspace Theory (GWT) - a leading scientific theory of phenomenal consciousness - is correct, then instances of one widely implemented AI architecture, the artificial language agent, might easily be made phenomenally conscious if they are not already. Along the way, we articulate an explicit methodology for thinking about how to apply scientific theories of consciousness to artificial systems and employ this methodology to arrive at a set of necessary and sufficient conditions for phenomenal consciousness according to GWT.
Related papers
- Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces.
While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks.
This paper revisits the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems.
arXiv Detail & Related papers (2024-04-29T04:51:05Z) - Is artificial consciousness achievable? Lessons from the human brain [0.0]
We analyse the question of developing artificial consciousness from an evolutionary perspective.
We take the evolution of the human brain and its relation with consciousness as a reference model.
We propose to clearly specify what is common and what differs in AI conscious processing from full human conscious experience.
arXiv Detail & Related papers (2024-04-18T12:59:44Z) - Artificial consciousness. Some logical and conceptual preliminaries [0.0]
We argue for the necessity of using dimensions and profiles of consciousness for a balanced discussion about their possible instantiation or realisation in artificial systems.
Our primary goal in this paper is to review the main theoretical questions that arise in the domain of artificial consciousness.
arXiv Detail & Related papers (2024-03-29T13:47:47Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - Consciousness in Artificial Intelligence: Insights from the Science of
Consciousness [31.991243430962054]
This report argues for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness.
We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory.
Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.
arXiv Detail & Related papers (2023-08-17T00:10:16Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - The problem with AI consciousness: A neurogenetic case against synthetic
sentience [0.0]
The paper argues against the plausibility of sentient AI based on the theory of neurogenetic structuralism.
It claims that the physiology of biological neurons and their structural organization into complex brains are necessary prerequisites for true consciousness to emerge.
arXiv Detail & Related papers (2022-12-07T14:46:38Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Inductive Biases for Deep Learning of Higher-Level Cognition [108.89281493851358]
A fascinating hypothesis is that human and animal intelligence could be explained by a few principles.
This work considers a larger list, focusing on those which concern mostly higher-level and sequential conscious processing.
The objective of clarifying these particular principles is that they could potentially help us build AI systems benefiting from humans' abilities.
arXiv Detail & Related papers (2020-11-30T18:29:25Z) - Formalizing Falsification for Theories of Consciousness Across
Computational Hierarchies [0.0]
Integrated Information Theory (IIT) is widely regarded as the preeminent theory of consciousness.
Epistemological issues in the form of the "unfolding argument" have provided a refutation of IIT.
We show how IIT is simultaneously falsified at the finite-state automaton level and unfalsifiable at the state automaton level.
arXiv Detail & Related papers (2020-06-12T18:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.