論文の概要: DynamicER: Resolving Emerging Mentions to Dynamic Entities for RAG
- arxiv url: http://arxiv.org/abs/2410.11494v1
- Date: Tue, 15 Oct 2024 10:57:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:05.633079
- Title: DynamicER: Resolving Emerging Mentions to Dynamic Entities for RAG
- Title(参考訳): DynamicER: RAGのための動的エンティティへの創発的メンションの解決
- Authors: Jinyoung Kim, Dayoon Ko, Gunhee Kim,
- Abstract要約: 動的エンティティへの新たな言及の解決を目的とした新しいタスクを導入する。
私たちのベンチマークには、動的エンティティ参照解決とエンティティ中心の知識集約型QAタスクが含まれています。
本稿では,進化する実体と出現する言及の時間的ダイナミクスを効果的に管理する,連続的適応型時間分割クラスタリング手法を提案する。
- 参考スコア(独自算出の注目度): 40.40642344216866
- License:
- Abstract: In the rapidly evolving landscape of language, resolving new linguistic expressions in continuously updating knowledge bases remains a formidable challenge. This challenge becomes critical in retrieval-augmented generation (RAG) with knowledge bases, as emerging expressions hinder the retrieval of relevant documents, leading to generator hallucinations. To address this issue, we introduce a novel task aimed at resolving emerging mentions to dynamic entities and present DynamicER benchmark. Our benchmark includes dynamic entity mention resolution and entity-centric knowledge-intensive QA task, evaluating entity linking and RAG model's adaptability to new expressions, respectively. We discovered that current entity linking models struggle to link these new expressions to entities. Therefore, we propose a temporal segmented clustering method with continual adaptation, effectively managing the temporal dynamics of evolving entities and emerging mentions. Extensive experiments demonstrate that our method outperforms existing baselines, enhancing RAG model performance on QA task with resolved mentions.
- Abstract(参考訳): 言語が急速に進化する中で、知識ベースを継続的に更新する新たな言語表現の解決は、依然として困難な課題である。
この課題は、知識ベースを持つ検索増強世代(RAG)において重要となり、新しい表現が関連する文書の検索を妨げるため、生成幻覚につながる。
この問題に対処するために、動的エンティティへの新たな言及とDynamicERベンチマークの解決を目的とした新しいタスクを導入する。
我々のベンチマークには、動的エンティティ参照解決とエンティティ中心の知識集約型QAタスクが含まれており、エンティティリンクとRAGモデルの新しい表現への適応性を評価している。
私たちは、現在のエンティティリンクモデルがこれらの新しい表現をエンティティにリンクするのに苦労していることを発見しました。
そこで本稿では,進化するエンティティや出現する参照の時間的ダイナミクスを効果的に管理する,継続的適応型時間分割クラスタリング手法を提案する。
実験の結果,提案手法は既存のベースラインよりも優れており,QAタスクにおけるRAGモデルの性能が向上していることがわかった。
関連論文リスト
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - KaPQA: Knowledge-Augmented Product Question-Answering [59.096607961704656]
我々はAdobe AcrobatとPhotoshop製品に焦点を当てた2つのQAデータセットを紹介した。
また、製品QAタスクにおけるモデルの性能を高めるために、新しい知識駆動型RAG-QAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-22T22:14:56Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - DVIS-DAQ: Improving Video Segmentation via Dynamic Anchor Queries [60.09774333024783]
動的アンカークエリ(DAQ)を導入し、アンカーとターゲットクエリ間の遷移ギャップを短くする。
また,クエリレベルのオブジェクトEmergence and Disappearance Simulation(EDS)戦略を導入する。
実験により、DVIS-DAQは5つの主流ビデオセグメンテーションベンチマーク上で、新しい最先端(SOTA)性能を達成することが示された。
論文 参考訳(メタデータ) (2024-03-29T17:58:50Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - Retrieval-guided Counterfactual Generation for QA [5.434621727606356]
質問応答のための偽物作成の課題に焦点をあてる。
本研究では,逆実効評価とトレーニングデータを作成するRetrieve-Generate-Filter手法を開発した。
RGFデータは局所摂動に対するモデルの堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2021-10-14T17:56:37Z) - GQE-PRF: Generative Query Expansion with Pseudo-Relevance Feedback [8.142861977776256]
PRFに基づくクエリ拡張にテキスト生成モデルを効果的に統合する新しい手法を提案する。
提案手法では,初期クエリと擬似関連フィードバックの両方を条件としたニューラルテキスト生成モデルを用いて,拡張クエリ項を生成する。
2つのベンチマークデータセットを用いて,情報検索タスクに対するアプローチの有効性を評価する。
論文 参考訳(メタデータ) (2021-08-13T01:09:02Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
ニューラルリレーション抽出(RE)に関連する言語特性を対象とした14の探索タスクを導入する。
私たちは、40以上の異なるエンコーダアーキテクチャと2つのデータセットでトレーニングされた言語的特徴の組み合わせによって学習された表現を研究するためにそれらを使用します。
アーキテクチャによって引き起こされるバイアスと言語的特徴の含意は、探索タスクのパフォーマンスにおいて明らかに表現されている。
論文 参考訳(メタデータ) (2020-04-17T09:17:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。