Multi-round jailbreak attack on large language models
- URL: http://arxiv.org/abs/2410.11533v2
- Date: Sat, 19 Oct 2024 09:17:32 GMT
- Title: Multi-round jailbreak attack on large language models
- Authors: Yihua Zhou, Xiaochuan Shi,
- Abstract summary: We introduce a multi-round jailbreak approach to better understand "jailbreak" attacks.
This method can rewrite the dangerous prompts, decomposing them into a series of less harmful sub-questions.
Our experimental results show a 94% success rate on the llama2-7B.
- Score: 2.540971544359496
- License:
- Abstract: Ensuring the safety and alignment of large language models (LLMs) with human values is crucial for generating responses that are beneficial to humanity. While LLMs have the capability to identify and avoid harmful queries, they remain vulnerable to "jailbreak" attacks, where carefully crafted prompts can induce the generation of toxic content. Traditional single-round jailbreak attacks, such as GCG and AutoDAN, do not alter the sensitive words in the dangerous prompts. Although they can temporarily bypass the model's safeguards through prompt engineering, their success rate drops significantly as the LLM is further fine-tuned, and they cannot effectively circumvent static rule-based filters that remove the hazardous vocabulary. In this study, to better understand jailbreak attacks, we introduce a multi-round jailbreak approach. This method can rewrite the dangerous prompts, decomposing them into a series of less harmful sub-questions to bypass the LLM's safety checks. We first use the LLM to perform a decomposition task, breaking down a set of natural language questions into a sequence of progressive sub-questions, which are then used to fine-tune the Llama3-8B model, enabling it to decompose hazardous prompts. The fine-tuned model is then used to break down the problematic prompt, and the resulting sub-questions are sequentially asked to the victim model. If the victim model rejects a sub-question, a new decomposition is generated, and the process is repeated until the final objective is achieved. Our experimental results show a 94\% success rate on the llama2-7B and demonstrate the effectiveness of this approach in circumventing static rule-based filters.
Related papers
- DROJ: A Prompt-Driven Attack against Large Language Models [0.0]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various natural language processing tasks.
Despite massive alignment efforts, LLMs remain susceptible to adversarial jailbreak attacks.
We introduce a novel approach, Directed Rrepresentation Optimization Jailbreak (DROJ)
arXiv Detail & Related papers (2024-11-14T01:48:08Z) - SequentialBreak: Large Language Models Can be Fooled by Embedding Jailbreak Prompts into Sequential Prompt Chains [0.0]
This paper introduces SequentialBreak, a novel jailbreak attack that exploits a vulnerability in Large Language Models (LLMs)
We discuss several scenarios, not limited to examples like Question Bank, Dialog Completion, and Game Environment, where the harmful prompt is embedded within benign ones that can fool LLMs into generating harmful responses.
Extensive experiments demonstrate that SequentialBreak uses only a single query to achieve a substantial gain of attack success rate.
arXiv Detail & Related papers (2024-11-10T11:08:28Z) - Diversity Helps Jailbreak Large Language Models [16.34618038553998]
We have uncovered a powerful jailbreak technique that leverages large language models' ability to diverge from prior context.
By simply instructing the LLM to deviate and obfuscate previous attacks, our method dramatically outperforms existing approaches.
This revelation exposes a critical flaw in current LLM safety training, suggesting that existing methods may merely mask vulnerabilities rather than eliminate them.
arXiv Detail & Related papers (2024-11-06T19:39:48Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - WordGame: Efficient & Effective LLM Jailbreak via Simultaneous Obfuscation in Query and Response [23.344727384686898]
We analyze the common pattern of the current safety alignment and show that it is possible to exploit such patterns for jailbreaking attacks by simultaneous obfuscation in queries and responses.
Specifically, we propose WordGame attack, which replaces malicious words with word games to break down the adversarial intent of a query.
arXiv Detail & Related papers (2024-05-22T21:59:22Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
Large Language Models (LLMs) are becoming a prominent generative AI tool, where the user enters a query and the LLM generates an answer.
To reduce harm and misuse, efforts have been made to align these LLMs to human values using advanced training techniques such as Reinforcement Learning from Human Feedback.
Recent studies have highlighted the vulnerability of LLMs to adversarial jailbreak attempts aiming at subverting the embedded safety guardrails.
This paper proposes a method called Gradient Cuff to detect jailbreak attempts.
arXiv Detail & Related papers (2024-03-01T03:29:54Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
In this study, we reveal the presence of multilingual jailbreak challenges within large language models (LLMs)
We consider two potential risky scenarios: unintentional and intentional.
We propose a novel textscSelf-Defense framework that automatically generates multilingual training data for safety fine-tuning.
arXiv Detail & Related papers (2023-10-10T09:44:06Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
We introduce AutoDAN, a novel jailbreak attack against aligned Large Language Models.
AutoDAN can automatically generate stealthy jailbreak prompts by the carefully designed hierarchical genetic algorithm.
arXiv Detail & Related papers (2023-10-03T19:44:37Z) - Universal and Transferable Adversarial Attacks on Aligned Language
Models [118.41733208825278]
We propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors.
Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable.
arXiv Detail & Related papers (2023-07-27T17:49:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.