PSVMA+: Exploring Multi-granularity Semantic-visual Adaption for Generalized Zero-shot Learning
- URL: http://arxiv.org/abs/2410.11560v1
- Date: Tue, 15 Oct 2024 12:49:33 GMT
- Title: PSVMA+: Exploring Multi-granularity Semantic-visual Adaption for Generalized Zero-shot Learning
- Authors: Man Liu, Huihui Bai, Feng Li, Chunjie Zhang, Yunchao Wei, Meng Wang, Tat-Seng Chua, Yao Zhao,
- Abstract summary: Generalized zero-shot learning (GZSL) endeavors to identify the unseen using knowledge from the seen domain.
GZSL suffers from insufficient visual-semantic correspondences due to attribute diversity and instance diversity.
We propose a multi-granularity progressive semantic-visual adaption network, where sufficient visual elements can be gathered to remedy the inconsistency.
- Score: 116.33775552866476
- License:
- Abstract: Generalized zero-shot learning (GZSL) endeavors to identify the unseen categories using knowledge from the seen domain, necessitating the intrinsic interactions between the visual features and attribute semantic features. However, GZSL suffers from insufficient visual-semantic correspondences due to the attribute diversity and instance diversity. Attribute diversity refers to varying semantic granularity in attribute descriptions, ranging from low-level (specific, directly observable) to high-level (abstract, highly generic) characteristics. This diversity challenges the collection of adequate visual cues for attributes under a uni-granularity. Additionally, diverse visual instances corresponding to the same sharing attributes introduce semantic ambiguity, leading to vague visual patterns. To tackle these problems, we propose a multi-granularity progressive semantic-visual mutual adaption (PSVMA+) network, where sufficient visual elements across granularity levels can be gathered to remedy the granularity inconsistency. PSVMA+ explores semantic-visual interactions at different granularity levels, enabling awareness of multi-granularity in both visual and semantic elements. At each granularity level, the dual semantic-visual transformer module (DSVTM) recasts the sharing attributes into instance-centric attributes and aggregates the semantic-related visual regions, thereby learning unambiguous visual features to accommodate various instances. Given the diverse contributions of different granularities, PSVMA+ employs selective cross-granularity learning to leverage knowledge from reliable granularities and adaptively fuses multi-granularity features for comprehensive representations. Experimental results demonstrate that PSVMA+ consistently outperforms state-of-the-art methods.
Related papers
- HSVLT: Hierarchical Scale-Aware Vision-Language Transformer for Multi-Label Image Classification [15.129037250680582]
Tight visual-linguistic interactions play a vital role in improving classification performance.
Recent Transformer-based methods have achieved great success in multi-label image classification.
We propose a Hierarchical Scale-Aware Vision-Language Transformer (HSVLT) with two appealing designs.
arXiv Detail & Related papers (2024-07-23T07:31:42Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
Vision tokenization is essential for semantic alignment between vision and language.
This paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok)
SeTok groups visual features into semantic units via a dynamic clustering algorithm.
The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features.
arXiv Detail & Related papers (2024-06-07T17:55:43Z) - Dual Relation Mining Network for Zero-Shot Learning [48.89161627050706]
We propose a Dual Relation Mining Network (DRMN) to enable effective visual-semantic interactions and learn semantic relationship among attributes for knowledge transfer.
Specifically, we introduce a Dual Attention Block (DAB) for visual-semantic relationship mining, which enriches visual information by multi-level feature fusion.
For semantic relationship modeling, we utilize a Semantic Interaction Transformer (SIT) to enhance the generalization of attribute representations among images.
arXiv Detail & Related papers (2024-05-06T16:31:19Z) - High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning [54.86882315023791]
We propose an innovative approach called High-Discriminative Attribute Feature Learning for Generalized Zero-Shot Learning (HDAFL)
HDAFL utilizes multiple convolutional kernels to automatically learn discriminative regions highly correlated with attributes in images.
We also introduce a Transformer-based attribute discrimination encoder to enhance the discriminative capability among attributes.
arXiv Detail & Related papers (2024-04-07T13:17:47Z) - Object Attribute Matters in Visual Question Answering [15.705504296316576]
We propose a novel VQA approach from the perspective of utilizing object attribute.
The attribute fusion module constructs a multimodal graph neural network to fuse attributes and visual features through message passing.
The better object-level visual-language alignment aids in understanding multimodal scenes, thereby improving the model's robustness.
arXiv Detail & Related papers (2023-12-20T12:46:30Z) - Progressive Semantic-Visual Mutual Adaption for Generalized Zero-Shot
Learning [74.48337375174297]
Generalized Zero-Shot Learning (GZSL) identifies unseen categories by knowledge transferred from the seen domain.
We deploy the dual semantic-visual transformer module (DSVTM) to progressively model the correspondences between prototypes and visual features.
DSVTM devises an instance-motivated semantic encoder that learns instance-centric prototypes to adapt to different images, enabling the recast of the unmatched semantic-visual pair into the matched one.
arXiv Detail & Related papers (2023-03-27T15:21:43Z) - Deep ViT Features as Dense Visual Descriptors [12.83702462166513]
We leverage deep features extracted from a pre-trained Vision Transformer (ViT) as dense visual descriptors.
These descriptors facilitate a variety of applications, including co-segmentation, part co-segmentation and correspondences.
arXiv Detail & Related papers (2021-12-10T20:15:03Z) - Semantic Disentangling Generalized Zero-Shot Learning [50.259058462272435]
Generalized Zero-Shot Learning (GZSL) aims to recognize images from both seen and unseen categories.
In this paper, we propose a novel feature disentangling approach based on an encoder-decoder architecture.
The proposed model aims to distill quality semantic-consistent representations that capture intrinsic features of seen images.
arXiv Detail & Related papers (2021-01-20T05:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.