論文の概要: Safety Filtering While Training: Improving the Performance and Sample Efficiency of Reinforcement Learning Agents
- arxiv url: http://arxiv.org/abs/2410.11671v2
- Date: Mon, 25 Nov 2024 23:44:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:30:27.092662
- Title: Safety Filtering While Training: Improving the Performance and Sample Efficiency of Reinforcement Learning Agents
- Title(参考訳): トレーニング中の安全フィルタリング:強化学習エージェントの性能とサンプル効率の改善
- Authors: Federico Pizarro Bejarano, Lukas Brunke, Angela P. Schoellig,
- Abstract要約: 強化学習(RL)コントローラは柔軟で性能が高いが、安全性を保証することは滅多にない。
安全フィルタは、柔軟性を維持しながら、RLコントローラにハードセーフの保証を与える。
我々は、評価中にのみ適用するのではなく、トレーニング用RLコントローラに安全フィルタを組み込むためのいくつかの変更を分析した。
- 参考スコア(独自算出の注目度): 7.55113002732746
- License:
- Abstract: Reinforcement learning (RL) controllers are flexible and performant but rarely guarantee safety. Safety filters impart hard safety guarantees to RL controllers while maintaining flexibility. However, safety filters can cause undesired behaviours due to the separation between the controller and the safety filter, often degrading performance and robustness. In this paper, we analyze several modifications to incorporating the safety filter in training RL controllers rather than solely applying it during evaluation. The modifications allow the RL controller to learn to account for the safety filter, improving performance. This paper presents a comprehensive analysis of training RL with safety filters, featuring simulated and real-world experiments with a Crazyflie 2.0 drone. We examine how various training modifications and hyperparameters impact performance, sample efficiency, safety, and chattering. Our findings serve as a guide for practitioners and researchers focused on safety filters and safe RL.
- Abstract(参考訳): 強化学習(RL)コントローラは柔軟で性能が高いが、安全性を保証することは滅多にない。
安全フィルタは、柔軟性を維持しながら、RLコントローラにハードセーフの保証を与える。
しかし、安全フィルタは、コントローラと安全フィルタの分離による望ましくない動作を引き起こし、しばしば性能と堅牢性を低下させる。
本稿では、評価中にのみ適用するのではなく、トレーニング用RLコントローラに安全フィルタを組み込むためのいくつかの変更について分析する。
この変更により、RLコントローラは安全フィルタを考慮に入れ、性能を向上させることができる。
本稿では,Crzyflie 2.0ドローンを用いたシミュレーションおよび実世界の実験を特徴とする安全フィルタを用いたRLの総合的な評価を行った。
様々なトレーニング修正やハイパーパラメータが,パフォーマンス,サンプル効率,安全性,おしゃべりに与える影響について検討する。
本研究は,安全フィルタと安全RLに着目した実践者や研究者のためのガイドとして機能する。
関連論文リスト
- ActSafe: Active Exploration with Safety Constraints for Reinforcement Learning [48.536695794883826]
本稿では,安全かつ効率的な探索のためのモデルベースRLアルゴリズムであるActSafeを提案する。
本稿では,ActSafeが学習中の安全性を保証しつつ,有限時間で準最適政策を得ることを示す。
さらに,最新のモデルベースRLの進歩に基づくActSafeの実用版を提案する。
論文 参考訳(メタデータ) (2024-10-12T10:46:02Z) - Safety-Oriented Pruning and Interpretation of Reinforcement Learning Policies [5.923818043882103]
Pruning Neural Network(NN)はそれらを合理化するが、安全な強化学習(RL)ポリシから重要なパラメータを取り除くリスクがある。
本稿では,NNプルーニングとモデルチェックを併用して,解釈可能なRL安全性を確保する,VERINTERと呼ばれる解釈可能なRL手法を提案する。
論文 参考訳(メタデータ) (2024-09-16T12:13:41Z) - Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
シールドディング」は、強化学習(RL)の安全性を強制する一般的な手法である
安全と遮蔽構造に対処する新しい許容性に基づく枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T18:00:21Z) - Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical
Systems [15.863561935347692]
非線形力学系の制御のための安全かつ収束性のある強化学習アルゴリズムを開発した。
制御とRLの交差点における最近の進歩は、ハードセーフティ制約を強制するための2段階の安全フィルタアプローチに従っている。
我々は,古典的な収束保証を享受するRLコントローラを学習する,一段階のサンプリングに基づくハード制約満足度へのアプローチを開発する。
論文 参考訳(メタデータ) (2024-03-06T19:39:20Z) - Modular Control Architecture for Safe Marine Navigation: Reinforcement Learning and Predictive Safety Filters [0.0]
強化学習は複雑なシナリオに適応するためにますます使われていますが、安全性と安定性を保証するための標準フレームワークは欠如しています。
予測安全フィルタ(PSF)は、明示的な制約処理を伴わずに、学習ベースの制御における制約満足度を確保する、有望なソリューションを提供する。
この手法を海洋航法に適用し,シミュレーションされたCybership IIモデル上でRLとPSFを組み合わせた。
その結果, PSF が安全維持に有効であることは, RL エージェントの学習速度と性能を損なうことなく示され, PSF を使用せずに標準 RL エージェントに対して評価された。
論文 参考訳(メタデータ) (2023-12-04T12:37:54Z) - Safe Deep Policy Adaptation [7.2747306035142225]
強化学習(RL)に基づく政策適応は、汎用性と汎用性を提供するが、安全性と堅牢性に挑戦する。
政策適応と安全強化学習の課題を同時に解決する新しいRLおよび制御フレームワークであるSafeDPAを提案する。
我々は、SafeDPAの理論的安全性を保証し、学習エラーや余分な摂動に対するSafeDPAの堅牢性を示す。
論文 参考訳(メタデータ) (2023-10-08T00:32:59Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
本稿では,安全評論家と報酬評論家からなる新しい乗法値関数を持つモデルフリーRLアルゴリズムを提案する。
安全評論家は、制約違反の確率を予測し、制限のないリターンのみを見積もる報酬批評家を割引する。
安全制約を付加した古典的RLベンチマークや、画像を用いたロボットナビゲーションタスク、生のライダースキャンを観察する4つの環境において、本手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-07T18:29:15Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
本稿では,ベースラインと安全エージェントからなる二重エージェント型安全強化学習戦略を提案する。
このような分離されたフレームワークは、RLベースの制御に対して高い柔軟性、データ効率、リスク認識を可能にする。
提案手法は,難易度の高いロボットの移動・操作作業において,最先端の安全RLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2022-12-14T03:11:25Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - SAFER: Data-Efficient and Safe Reinforcement Learning via Skill
Acquisition [59.94644674087599]
安全制約下での複雑な制御タスクにおけるポリシー学習を高速化するアルゴリズムであるSAFEty skill pRiors (SAFER)を提案する。
オフラインデータセットでの原則的なトレーニングを通じて、SAFERは安全なプリミティブスキルの抽出を学ぶ。
推論段階では、SAFERで訓練されたポリシーは、安全なスキルを成功のポリシーに組み込むことを学ぶ。
論文 参考訳(メタデータ) (2022-02-10T05:43:41Z) - Safe Model-Based Reinforcement Learning Using Robust Control Barrier
Functions [43.713259595810854]
安全に対処する一般的なアプローチとして、安全層が追加され、RLアクションを安全な一連のアクションに投影する。
本稿では,モデルベースRLフレームワークにおけるロバスト制御バリア機能層としての安全性について述べる。
論文 参考訳(メタデータ) (2021-10-11T17:00:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。