IntGrad MT: Eliciting LLMs' Machine Translation Capabilities with Sentence Interpolation and Gradual MT
- URL: http://arxiv.org/abs/2410.11693v2
- Date: Wed, 16 Oct 2024 01:45:28 GMT
- Title: IntGrad MT: Eliciting LLMs' Machine Translation Capabilities with Sentence Interpolation and Gradual MT
- Authors: Seung-Woo Choi, Ga-Hyun Yoo, Jay-Yoon Lee,
- Abstract summary: Large Language Models (LLMs) have demonstrated strong performance in translation without needing to be finetuned on additional parallel corpora.
Previous works have focused on mitigating this issue by leveraging relevant few-shot examples or external resources such as dictionaries or grammar books.
We propose a novel method named IntGrad MT that focuses on fully exploiting an LLM's inherent translation capability.
- Score: 5.323504404265276
- License:
- Abstract: Recent Large Language Models (LLMs) have demonstrated strong performance in translation without needing to be finetuned on additional parallel corpora. However, they still underperform for low-resource language pairs. Previous works have focused on mitigating this issue by leveraging relevant few-shot examples or external resources such as dictionaries or grammar books, making models heavily reliant on these nonparametric sources of information. In this paper, we propose a novel method named IntGrad MT that focuses on fully exploiting an LLM's inherent translation capability. IntGrad MT achieves this by constructing a chain of few-shot examples, each consisting of a source sentence and the model's own translation, that rise incrementally in difficulty. IntGrad MT employs two techniques: Sentence Interpolation, which generates a sequence of sentences that gradually change from an easy sentence to translate to a difficult one, and Gradual MT, which sequentially translates this chain using translations of earlier sentences as few-shot examples for the translation of subsequent ones. With this approach, we observe a substantial enhancement in the xCOMET scores of various LLMs for multiple languages, especially in low-resource languages such as Hindi(8.26), Swahili(7.10), Bengali(6.97) and Marathi(13.03). Our approach presents a practical way of enhancing LLMs' performance without extra training.
Related papers
- Analyzing Context Contributions in LLM-based Machine Translation [21.95318929582271]
Large language models (LLMs) have achieved state-of-the-art performance in machine translation (MT)
We study how LLMs use various context parts, such as few-shot examples and the source text, when generating translations.
Our findings shed light on the internal workings of LLM-based MT which go beyond those known for standard encoder-decoder MT models.
arXiv Detail & Related papers (2024-10-21T17:51:41Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
Large Language Models (LLM's) have demonstrated considerable success in various Natural Language Processing tasks.
We show that they have yet to attain state-of-the-art performance in Neural Machine Translation.
We propose adapting LLM's as Automatic Post-Editors (APE) rather than direct translators.
arXiv Detail & Related papers (2023-10-23T12:22:15Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
We propose a novel framework using examples in comparison to teach LLMs to learn translation.
Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning.
Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations.
arXiv Detail & Related papers (2023-07-10T08:15:40Z) - Do GPTs Produce Less Literal Translations? [20.095646048167612]
Large Language Models (LLMs) have emerged as general-purpose language models capable of addressing many natural language generation or understanding tasks.
We find that translations out of English (E-X) from GPTs tend to be less literal, while exhibiting similar or better scores on Machine Translation quality metrics.
arXiv Detail & Related papers (2023-05-26T10:38:31Z) - Chain-of-Dictionary Prompting Elicits Translation in Large Language Models [100.47154959254937]
Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT)
We present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities.
arXiv Detail & Related papers (2023-05-11T05:19:47Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z) - Dictionary-based Phrase-level Prompting of Large Language Models for
Machine Translation [91.57514888410205]
Large language models (LLMs) demonstrate remarkable machine translation (MT) abilities via prompting.
LLMs can struggle to translate inputs with rare words, which are common in low resource or domain transfer scenarios.
We show that LLM prompting can provide an effective solution for rare words as well, by using prior knowledge from bilingual dictionaries to provide control hints in the prompts.
arXiv Detail & Related papers (2023-02-15T18:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.