BridG MT: Enhancing LLMs' Machine Translation Capabilities with Sentence Bridging and Gradual MT
- URL: http://arxiv.org/abs/2410.11693v3
- Date: Mon, 02 Jun 2025 02:28:27 GMT
- Title: BridG MT: Enhancing LLMs' Machine Translation Capabilities with Sentence Bridging and Gradual MT
- Authors: Seung-Woo Choi, Ga-Hyun Yoo, Jay-Yoon Lee,
- Abstract summary: We propose BridG MT, a method that combines Sentence Bridging, which generates a sequence of sentences as a bridge that gradually transition from easy-to-translate to more difficult, and Gradual MT, which sequentially translates these sentences using earlier translations as few-shot examples for subsequent ones.<n> Experiments conducted on four LLMs across seven languages demonstrate that our method effectively enhances translation performance, even outperforming translation methods that rely on a large number of few-shot examples.
- Score: 5.323504404265276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent Large Language Models (LLMs) have demonstrated impressive translation performance without requiring fine-tuning on additional parallel corpora. However, they still face significant challenges in certain scenarios, particularly when translating low-resource languages. A common approach to address this issue is to provide external knowledge, such as few-shot examples, to assist LLMs in translating specific source sentences. However, this method is fundamentally limited by the quality or quantity of relevant sources, which cannot always be guaranteed. To reduce LLMs' reliance on external sources, we propose BridG MT, a method that combines Sentence Bridging, which generates a sequence of sentences as a bridge that gradually transition from easy-to-translate to more difficult, and Gradual MT, which sequentially translates these sentences using earlier translations as few-shot examples for subsequent ones. Experiments conducted on four LLMs across seven languages demonstrate that our method effectively enhances translation performance, even outperforming translation methods that rely on a large number of few-shot examples.
Related papers
- Trans-Zero: Self-Play Incentivizes Large Language Models for Multilingual Translation Without Parallel Data [64.4458540273004]
We propose a self-play framework that leverages only monolingual data and the intrinsic multilingual knowledge of Large Language Models (LLMs)
Experiments demonstrate that this approach not only matches the performance of models trained on large-scale parallel data but also excels in non-English translation directions.
arXiv Detail & Related papers (2025-04-20T16:20:30Z) - Compositional Translation: A Novel LLM-based Approach for Low-resource Machine Translation [20.704153242284114]
Machine Translation has been shown to benefit from in-context examples when they are semantically similar to the sentence to translate.
We propose a new LLM-based translation paradigm, compositional translation, to replace naive few-shot MT with similarity-based demonstrations.
Our intuition is that this approach should improve translation because these shorter phrases should be intrinsically easier to translate and easier to match with relevant examples.
arXiv Detail & Related papers (2025-03-06T15:37:31Z) - Lost in Literalism: How Supervised Training Shapes Translationese in LLMs [51.04435855143767]
Large language models (LLMs) have achieved remarkable success in machine translation.
However, translationese, characterized by overly literal and unnatural translations, remains a persistent challenge.
We introduce methods to mitigate these biases, including polishing golden references and filtering unnatural training instances.
arXiv Detail & Related papers (2025-03-06T12:14:45Z) - Understanding In-Context Machine Translation for Low-Resource Languages: A Case Study on Manchu [53.437954702561065]
In-context machine translation (MT) with large language models (LLMs) is a promising approach for low-resource MT.
This study systematically investigates how each resource and its quality affects the translation performance, with the Manchu language.
Our results indicate that high-quality dictionaries and good parallel examples are very helpful, while grammars hardly help.
arXiv Detail & Related papers (2025-02-17T14:53:49Z) - Paraphrase-Aligned Machine Translation [7.258916315600866]
Large Language Models (LLMs) have demonstrated significant capabilities in machine translation.<n>We propose ParaAlign Translator, a method that fine-tunes LLMs to paraphrase sentences, aligning their structures with those of the target language systems.<n> Experimental results demonstrate that the proposed method enhances the LLaMA-3-8B model's performance in both resource-rich and low-resource scenarios.
arXiv Detail & Related papers (2024-12-08T12:17:26Z) - Analyzing Context Contributions in LLM-based Machine Translation [21.95318929582271]
Large language models (LLMs) have achieved state-of-the-art performance in machine translation (MT)
We study how LLMs use various context parts, such as few-shot examples and the source text, when generating translations.
Our findings shed light on the internal workings of LLM-based MT which go beyond those known for standard encoder-decoder MT models.
arXiv Detail & Related papers (2024-10-21T17:51:41Z) - LLM-based Translation Inference with Iterative Bilingual Understanding [52.46978502902928]
We propose a novel Iterative Bilingual Understanding Translation method based on the cross-lingual capabilities of large language models (LLMs)<n>The cross-lingual capability of LLMs enables the generation of contextual understanding for both the source and target languages separately.<n>The proposed IBUT outperforms several strong comparison methods.
arXiv Detail & Related papers (2024-10-16T13:21:46Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing [12.843274390224853]
Large Language Models (LLM's) have demonstrated considerable success in various Natural Language Processing tasks.
We show that they have yet to attain state-of-the-art performance in Neural Machine Translation.
We propose adapting LLM's as Automatic Post-Editors (APE) rather than direct translators.
arXiv Detail & Related papers (2023-10-23T12:22:15Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
We propose a novel framework using examples in comparison to teach LLMs to learn translation.
Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning.
Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations.
arXiv Detail & Related papers (2023-07-10T08:15:40Z) - Do GPTs Produce Less Literal Translations? [20.095646048167612]
Large Language Models (LLMs) have emerged as general-purpose language models capable of addressing many natural language generation or understanding tasks.
We find that translations out of English (E-X) from GPTs tend to be less literal, while exhibiting similar or better scores on Machine Translation quality metrics.
arXiv Detail & Related papers (2023-05-26T10:38:31Z) - Chain-of-Dictionary Prompting Elicits Translation in Large Language Models [100.47154959254937]
Large language models (LLMs) have shown surprisingly good performance in multilingual neural machine translation (MNMT)
We present a novel method, CoD, which augments LLMs with prior knowledge with the chains of multilingual dictionaries for a subset of input words to elicit translation abilities.
arXiv Detail & Related papers (2023-05-11T05:19:47Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z) - Dictionary-based Phrase-level Prompting of Large Language Models for
Machine Translation [91.57514888410205]
Large language models (LLMs) demonstrate remarkable machine translation (MT) abilities via prompting.
LLMs can struggle to translate inputs with rare words, which are common in low resource or domain transfer scenarios.
We show that LLM prompting can provide an effective solution for rare words as well, by using prior knowledge from bilingual dictionaries to provide control hints in the prompts.
arXiv Detail & Related papers (2023-02-15T18:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.