Selection-p: Self-Supervised Task-Agnostic Prompt Compression for Faithfulness and Transferability
- URL: http://arxiv.org/abs/2410.11786v2
- Date: Mon, 21 Oct 2024 13:11:44 GMT
- Title: Selection-p: Self-Supervised Task-Agnostic Prompt Compression for Faithfulness and Transferability
- Authors: Tsz Ting Chung, Leyang Cui, Lemao Liu, Xinting Huang, Shuming Shi, Dit-Yan Yeung,
- Abstract summary: In this paper, we investigate the ability of Large Language Models to develop a unified compression method that discretizes uninformative tokens.
Experiments show Selection-p achieves state-of-the-art performance across numerous classification tasks.
It exhibits superior transferability to different models compared to prior work.
- Score: 67.77534983324229
- License:
- Abstract: Large Language Models (LLMs) have demonstrated impressive capabilities in a wide range of natural language processing tasks when leveraging in-context learning. To mitigate the additional computational and financial costs associated with in-context learning, several prompt compression methods have been proposed to compress the in-context learning prompts. Despite their success, these methods face challenges with transferability due to model-specific compression, or rely on external training data, such as GPT-4. In this paper, we investigate the ability of LLMs to develop a unified compression method that discretizes uninformative tokens, utilizing a self-supervised pre-training technique. By introducing a small number of parameters during the continual pre-training, the proposed Selection-p produces a probability for each input token, indicating whether to preserve or discard it. Experiments show Selection-p achieves state-of-the-art performance across numerous classification tasks, achieving compression rates of up to 10 times while experiencing only a marginal 0.8% decrease in performance. Moreover, it exhibits superior transferability to different models compared to prior work. Additionally, we further analyze how Selection-p helps maintain performance on in-context learning with long contexts.
Related papers
- Approximating Human-Like Few-shot Learning with GPT-based Compression [55.699707962017975]
We seek to equip generative pre-trained models with human-like learning capabilities that enable data compression during inference.
We present a novel approach that utilizes the Generative Pre-trained Transformer (GPT) to approximate Kolmogorov complexity.
arXiv Detail & Related papers (2023-08-14T05:22:33Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Resilient Constrained Learning [94.27081585149836]
This paper presents a constrained learning approach that adapts the requirements while simultaneously solving the learning task.
We call this approach resilient constrained learning after the term used to describe ecological systems that adapt to disruptions by modifying their operation.
arXiv Detail & Related papers (2023-06-04T18:14:18Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - Prompt Consistency for Zero-Shot Task Generalization [118.81196556175797]
In this paper, we explore methods to utilize unlabeled data to improve zero-shot performance.
Specifically, we take advantage of the fact that multiple prompts can be used to specify a single task, and propose to regularize prompt consistency.
Our approach outperforms the state-of-the-art zero-shot learner, T0, on 9 out of 11 datasets across 4 NLP tasks by up to 10.6 absolute points in terms of accuracy.
arXiv Detail & Related papers (2022-04-29T19:18:37Z) - Analyzing Student Strategies In Blended Courses Using Clickstream Data [32.81171098036632]
We use pattern mining and models borrowed from Natural Language Processing to understand student interactions.
Fine-grained clickstream data is collected through Diderot, a non-commercial educational support system.
Our results suggest that the proposed hybrid NLP methods can provide valuable insights even in the low-data setting of blended courses.
arXiv Detail & Related papers (2020-05-31T03:01:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.