論文の概要: Efficient Diffusion Models: A Comprehensive Survey from Principles to Practices
- arxiv url: http://arxiv.org/abs/2410.11795v1
- Date: Tue, 15 Oct 2024 17:19:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:02:04.367782
- Title: Efficient Diffusion Models: A Comprehensive Survey from Principles to Practices
- Title(参考訳): 効率的な拡散モデル:原則から実践への包括的調査
- Authors: Zhiyuan Ma, Yuzhu Zhang, Guoli Jia, Liangliang Zhao, Yichao Ma, Mingjie Ma, Gaofeng Liu, Kaiyan Zhang, Jianjun Li, Bowen Zhou,
- Abstract要約: 拡散モデルは、様々な生成タスクにおいて、着実に優れた優位性を示している。
この調査は、アーキテクチャ設計、モデルトレーニング、高速な推論、信頼性のあるデプロイメントにおける深い原則と効率的なプラクティスに焦点を当てます。
- 参考スコア(独自算出の注目度): 22.302766058992002
- License:
- Abstract: As one of the most popular and sought-after generative models in the recent years, diffusion models have sparked the interests of many researchers and steadily shown excellent advantage in various generative tasks such as image synthesis, video generation, molecule design, 3D scene rendering and multimodal generation, relying on their dense theoretical principles and reliable application practices. The remarkable success of these recent efforts on diffusion models comes largely from progressive design principles and efficient architecture, training, inference, and deployment methodologies. However, there has not been a comprehensive and in-depth review to summarize these principles and practices to help the rapid understanding and application of diffusion models. In this survey, we provide a new efficiency-oriented perspective on these existing efforts, which mainly focuses on the profound principles and efficient practices in architecture designs, model training, fast inference and reliable deployment, to guide further theoretical research, algorithm migration and model application for new scenarios in a reader-friendly way. \url{https://github.com/ponyzym/Efficient-DMs-Survey}
- Abstract(参考訳): 近年, 画像合成, ビデオ生成, 分子設計, 3Dシーンレンダリング, マルチモーダル生成といった様々な生成タスクにおいて, 密集した理論原理と信頼性の高い応用手法を頼りに, 拡散モデルが優れた優位性を示した。
拡散モデルに対する最近の取り組みの顕著な成功は、プログレッシブな設計原則と効率的なアーキテクチャ、トレーニング、推論、デプロイメント方法論から来ています。
しかしながら、拡散モデルの迅速な理解と適用を支援するため、これらの原則とプラクティスを要約する包括的で詳細なレビューは行われていない。
この調査では、アーキテクチャ設計、モデルトレーニング、高速推論、信頼性の高いデプロイメントにおける深い原則と効果的な実践に焦点を当てた、これらの既存の取り組みに対する新たな効率重視の視点を提供し、より理論的な研究、アルゴリズムマイグレーション、新しいシナリオを読者に優しい方法でモデルアプリケーションに導く。
\url{https://github.com/ponyzym/Efficient-DMs-Survey}
関連論文リスト
- Alignment of Diffusion Models: Fundamentals, Challenges, and Future [28.64041196069495]
拡散モデルは生成モデルの主要なパラダイムとして登場し、様々な応用に優れています。
彼らの成功にもかかわらず、これらのモデルは、しばしば人間の意図に反し、テキストのプロンプトと一致しない、あるいは望ましい特性を持たない出力を生成する。
大規模言語モデルの調整におけるアライメントの成功に触発された最近の研究は、人間の期待や嗜好と拡散モデルの整合性について研究している。
論文 参考訳(メタデータ) (2024-09-11T13:21:32Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
パラメータ効率の細かいチューニング(PEFT)は、パラメータの選択したサブセットを最適化し、残りを固定し、計算とストレージのオーバーヘッドを大幅に削減することに焦点を当てている。
分解の観点からそれらを分離することで、すべてのアプローチを統一する第一歩を踏み出します。
本稿では,PEFT技術の性能向上を目的とした,単純かつ効果的なフレームワークとともに,新しい2つのPEFT手法を提案する。
論文 参考訳(メタデータ) (2024-07-07T15:44:42Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
拡散モデルに基づくソリューションは、優れた品質と多様性のサンプルを作成する能力で広く称賛されている。
本稿では,3つの一般化拡散モデリングフレームワークを提案し,それらと他の深層生成モデルとの相関関係について検討する。
医療、リモートセンシング、ビデオシナリオなど、他のタスクに適用された拡張拡散モデルについて要約する。
論文 参考訳(メタデータ) (2024-06-17T01:49:27Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
拡散モデルはコンピュータビジョン、オーディオ、強化学習、計算生物学において大きな成功を収めた。
経験的成功にもかかわらず、拡散モデルの理論は非常に限定的である。
本稿では,前向きな理論や拡散モデルの手法を刺激する理論的露光について述べる。
論文 参考訳(メタデータ) (2024-04-11T14:07:25Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - Diffusion Models for Time Series Applications: A Survey [23.003273147019446]
拡散モデルは現在、画像、ビデオ、テキスト合成に使われている。
我々は,時系列予測,計算,生成のための拡散に基づく手法に着目する。
拡散型手法の共通限界を結論し,今後の研究の方向性を明らかにする。
論文 参考訳(メタデータ) (2023-05-01T02:06:46Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
本稿では,画像検索を生成モデルの一種として再フレーミングする新しい手法を提案する。
我々は、イメージを意味単位の簡潔なシーケンスに変換するという技術的課題に対処するため、IRGenと呼ばれるモデルを開発した。
本モデルは,広範に使用されている3つの画像検索ベンチマークと200万件のデータセットに対して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-03-17T17:07:36Z) - Interpretable ODE-style Generative Diffusion Model via Force Field
Construction [0.0]
本稿では,数理的な観点からODE型生成拡散モデルを構築するのに適した様々な物理モデルを特定することを目的とする。
我々は,本手法で同定された理論モデルを用いて,新しい拡散モデル手法の開発を行うケーススタディを行う。
論文 参考訳(メタデータ) (2023-03-14T16:58:11Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。