NesTools: A Dataset for Evaluating Nested Tool Learning Abilities of Large Language Models
- URL: http://arxiv.org/abs/2410.11805v1
- Date: Tue, 15 Oct 2024 17:33:43 GMT
- Title: NesTools: A Dataset for Evaluating Nested Tool Learning Abilities of Large Language Models
- Authors: Han Han, Tong Zhu, Xiang Zhang, Mengsong Wu, Hao Xiong, Wenliang Chen,
- Abstract summary: We introduce NesTools to bridge the gap in comprehensive nested tool learning evaluations.
NesTools comprises a novel automatic data generation method to construct large-scale nested tool calls.
With manual review and refinement, the dataset is in high quality and closely aligned with real-world scenarios.
- Score: 10.344854970262984
- License:
- Abstract: Large language models (LLMs) combined with tool learning have gained impressive results in real-world applications. During tool learning, LLMs may call multiple tools in nested orders, where the latter tool call may take the former response as its input parameters. However, current research on the nested tool learning capabilities is still under-explored, since the existing benchmarks lack of relevant data instances. To address this problem, we introduce NesTools to bridge the current gap in comprehensive nested tool learning evaluations. NesTools comprises a novel automatic data generation method to construct large-scale nested tool calls with different nesting structures. With manual review and refinement, the dataset is in high quality and closely aligned with real-world scenarios. Therefore, NesTools can serve as a new benchmark to evaluate the nested tool learning abilities of LLMs. We conduct extensive experiments on 22 LLMs, and provide in-depth analyses with NesTools, which shows that current LLMs still suffer from the complex nested tool learning task.
Related papers
- Enhancing Tool Retrieval with Iterative Feedback from Large Language Models [9.588592185027455]
Large language models (LLMs) can effectively handle a certain amount of tools through in-context learning or fine-tuning.
In real-world scenarios, the number of tools is typically extensive and irregularly updated, emphasizing the necessity for a dedicated tool retrieval component.
We propose to enhance tool retrieval with iterative feedback from the large language model.
arXiv Detail & Related papers (2024-06-25T11:12:01Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - ToolNet: Connecting Large Language Models with Massive Tools via Tool
Graph [43.95759808077083]
Existing in-context learning approaches simply format tools into a list of plain text descriptions and input them to large language models.
This paper proposes ToolNet, a plug-and-play framework that scales up the number of tools to thousands with a moderate increase in token consumption.
arXiv Detail & Related papers (2024-02-29T02:04:00Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraTool is a novel benchmark designed to improve and evaluate Large Language Models' ability in tool utilization.
It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving.
A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage.
arXiv Detail & Related papers (2024-01-30T16:52:56Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyTool is a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction.
It can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios.
arXiv Detail & Related papers (2024-01-11T15:45:11Z) - ToolEyes: Fine-Grained Evaluation for Tool Learning Capabilities of
Large Language Models in Real-world Scenarios [48.38419686697733]
We propose ToolEyes, a fine-grained system tailored for the evaluation of large language models' tool learning capabilities in authentic scenarios.
The system meticulously examines seven real-world scenarios, analyzing five dimensions crucial to LLMs in tool learning.
ToolEyes incorporates a tool library boasting approximately 600 tools, serving as an intermediary between LLMs and the physical world.
arXiv Detail & Related papers (2024-01-01T12:49:36Z) - MetaTool Benchmark for Large Language Models: Deciding Whether to Use
Tools and Which to Use [82.24774504584066]
Large language models (LLMs) have garnered significant attention due to their impressive natural language processing (NLP) capabilities.
We introduce MetaTool, a benchmark designed to evaluate whether LLMs have tool usage awareness and can correctly choose tools.
We conduct experiments involving eight popular LLMs and find that the majority of them still struggle to effectively select tools.
arXiv Detail & Related papers (2023-10-04T19:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.