SGEdit: Bridging LLM with Text2Image Generative Model for Scene Graph-based Image Editing
- URL: http://arxiv.org/abs/2410.11815v1
- Date: Tue, 15 Oct 2024 17:40:48 GMT
- Title: SGEdit: Bridging LLM with Text2Image Generative Model for Scene Graph-based Image Editing
- Authors: Zhiyuan Zhang, DongDong Chen, Jing Liao,
- Abstract summary: We introduce a new framework that integrates large language model (LLM) with Text2 generative model for graph-based image editing.
Our framework significantly outperforms existing image editing methods in terms of editing precision and scene aesthetics.
- Score: 42.23117201457898
- License:
- Abstract: Scene graphs offer a structured, hierarchical representation of images, with nodes and edges symbolizing objects and the relationships among them. It can serve as a natural interface for image editing, dramatically improving precision and flexibility. Leveraging this benefit, we introduce a new framework that integrates large language model (LLM) with Text2Image generative model for scene graph-based image editing. This integration enables precise modifications at the object level and creative recomposition of scenes without compromising overall image integrity. Our approach involves two primary stages: 1) Utilizing a LLM-driven scene parser, we construct an image's scene graph, capturing key objects and their interrelationships, as well as parsing fine-grained attributes such as object masks and descriptions. These annotations facilitate concept learning with a fine-tuned diffusion model, representing each object with an optimized token and detailed description prompt. 2) During the image editing phase, a LLM editing controller guides the edits towards specific areas. These edits are then implemented by an attention-modulated diffusion editor, utilizing the fine-tuned model to perform object additions, deletions, replacements, and adjustments. Through extensive experiments, we demonstrate that our framework significantly outperforms existing image editing methods in terms of editing precision and scene aesthetics.
Related papers
- PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models [80.98455219375862]
We present the first text-based image editing approach for object parts based on pre-trained diffusion models.
Our approach is preferred by users 77-90% of the time in conducted user studies.
arXiv Detail & Related papers (2025-02-06T13:08:43Z) - BrushEdit: All-In-One Image Inpainting and Editing [79.55816192146762]
BrushEdit is a novel inpainting-based instruction-guided image editing paradigm.
We devise a system enabling free-form instruction editing by integrating MLLMs and a dual-branch image inpainting model.
Our framework effectively combines MLLMs and inpainting models, achieving superior performance across seven metrics.
arXiv Detail & Related papers (2024-12-13T17:58:06Z) - A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models [117.77807994397784]
Image editing aims to edit the given synthetic or real image to meet the specific requirements from users.
Recent significant advancement in this field is based on the development of text-to-image (T2I) diffusion models.
T2I-based image editing methods significantly enhance editing performance and offer a user-friendly interface for modifying content guided by multimodal inputs.
arXiv Detail & Related papers (2024-06-20T17:58:52Z) - An Item is Worth a Prompt: Versatile Image Editing with Disentangled Control [21.624984690721842]
D-Edit is a framework to disentangle the comprehensive image-prompt interaction into several item-prompt interactions.
It is based on pretrained diffusion models with cross-attention layers disentangled and adopts a two-step optimization to build item-prompt associations.
We demonstrate state-of-the-art results in four types of editing operations including image-based, text-based, mask-based editing, and item removal.
arXiv Detail & Related papers (2024-03-07T20:06:29Z) - Optimisation-Based Multi-Modal Semantic Image Editing [58.496064583110694]
We propose an inference-time editing optimisation to accommodate multiple editing instruction types.
By allowing to adjust the influence of each loss function, we build a flexible editing solution that can be adjusted to user preferences.
We evaluate our method using text, pose and scribble edit conditions, and highlight our ability to achieve complex edits.
arXiv Detail & Related papers (2023-11-28T15:31:11Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGAN is a novel method for high quality, high precision semantic image editing.
We show that EditGAN can manipulate images with an unprecedented level of detail and freedom.
We can also easily combine multiple edits and perform plausible edits beyond EditGAN training data.
arXiv Detail & Related papers (2021-11-04T22:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.