PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models
- URL: http://arxiv.org/abs/2502.04050v1
- Date: Thu, 06 Feb 2025 13:08:43 GMT
- Title: PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models
- Authors: Aleksandar Cvejic, Abdelrahman Eldesokey, Peter Wonka,
- Abstract summary: We present the first text-based image editing approach for object parts based on pre-trained diffusion models.
Our approach is preferred by users 77-90% of the time in conducted user studies.
- Score: 80.98455219375862
- License:
- Abstract: We present the first text-based image editing approach for object parts based on pre-trained diffusion models. Diffusion-based image editing approaches capitalized on the deep understanding of diffusion models of image semantics to perform a variety of edits. However, existing diffusion models lack sufficient understanding of many object parts, hindering fine-grained edits requested by users. To address this, we propose to expand the knowledge of pre-trained diffusion models to allow them to understand various object parts, enabling them to perform fine-grained edits. We achieve this by learning special textual tokens that correspond to different object parts through an efficient token optimization process. These tokens are optimized to produce reliable localization masks at each inference step to localize the editing region. Leveraging these masks, we design feature-blending and adaptive thresholding strategies to execute the edits seamlessly. To evaluate our approach, we establish a benchmark and an evaluation protocol for part editing. Experiments show that our approach outperforms existing editing methods on all metrics and is preferred by users 77-90% of the time in conducted user studies.
Related papers
- Edicho: Consistent Image Editing in the Wild [90.42395533938915]
Edicho steps in with a training-free solution based on diffusion models.
It features a fundamental design principle of using explicit image correspondence to direct editing.
arXiv Detail & Related papers (2024-12-30T16:56:44Z) - EditScout: Locating Forged Regions from Diffusion-based Edited Images with Multimodal LLM [50.054404519821745]
We present a novel framework that integrates a multimodal Large Language Model for enhanced reasoning capabilities.
Our framework achieves promising results on MagicBrush, AutoSplice, and PerfBrush datasets.
Notably, our method excels on the PerfBrush dataset, a self-constructed test set featuring previously unseen types of edits.
arXiv Detail & Related papers (2024-12-05T02:05:33Z) - TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models [53.757752110493215]
We focus on a popular line of text-based editing frameworks - the edit-friendly'' DDPM-noise inversion approach.
We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength.
We propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts.
arXiv Detail & Related papers (2024-08-01T17:27:28Z) - Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing [2.5602836891933074]
A commonly adopted strategy for editing real images involves inverting the diffusion process to obtain a noisy representation of the original image.
Current methods for diffusion inversion often struggle to produce edits that are both faithful to the specified text prompt and closely resemble the source image.
We introduce a novel and adaptable diffusion inversion technique for real image editing, which is grounded in a theoretical analysis of the role of $eta$ in the DDIM sampling equation for enhanced editability.
arXiv Detail & Related papers (2024-03-14T15:07:36Z) - Diffusion Model-Based Image Editing: A Survey [46.244266782108234]
Denoising diffusion models have emerged as a powerful tool for various image generation and editing tasks.
We provide an exhaustive overview of existing methods using diffusion models for image editing.
To further evaluate the performance of text-guided image editing algorithms, we propose a systematic benchmark, EditEval.
arXiv Detail & Related papers (2024-02-27T14:07:09Z) - Object-aware Inversion and Reassembly for Image Editing [61.19822563737121]
We propose Object-aware Inversion and Reassembly (OIR) to enable object-level fine-grained editing.
We use our search metric to find the optimal inversion step for each editing pair when editing an image.
Our method achieves superior performance in editing object shapes, colors, materials, categories, etc., especially in multi-object editing scenarios.
arXiv Detail & Related papers (2023-10-18T17:59:02Z) - Direct Inversion: Boosting Diffusion-based Editing with 3 Lines of Code [19.988947272980848]
"Direct Inversion" is a novel technique achieving optimal performance of both branches with just three lines of code.
We present PIE-Bench, an editing benchmark with 700 images showcasing diverse scenes and editing types.
Compared to state-of-the-art optimization-based inversion techniques, our solution not only yields superior performance across 8 editing methods but also achieves nearly an order of speed-up.
arXiv Detail & Related papers (2023-10-02T18:01:55Z) - Fine-grained Image Editing by Pixel-wise Guidance Using Diffusion Models [4.855820180160146]
We propose a novel diffusion-based image editing framework with pixel-wise guidance.
We demonstrate that our proposal outperforms the GAN-based method for editing quality and speed.
arXiv Detail & Related papers (2022-12-05T04:39:08Z) - DiffEdit: Diffusion-based semantic image editing with mask guidance [64.555930158319]
DiffEdit is a method to take advantage of text-conditioned diffusion models for the task of semantic image editing.
Our main contribution is able to automatically generate a mask highlighting regions of the input image that need to be edited.
arXiv Detail & Related papers (2022-10-20T17:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.