Comparing Zealous and Restrained AI Recommendations in a Real-World Human-AI Collaboration Task
- URL: http://arxiv.org/abs/2410.11860v1
- Date: Sun, 06 Oct 2024 23:19:19 GMT
- Title: Comparing Zealous and Restrained AI Recommendations in a Real-World Human-AI Collaboration Task
- Authors: Chengyuan Xu, Kuo-Chin Lien, Tobias Höllerer,
- Abstract summary: We argue that careful exploitation of the tradeoff between precision and recall can significantly improve team performance.
We analyze the performance of 78 professional annotators working with a) no AI assistance, b) a high-precision "restrained" AI, and c) a high-recall "zealous" AI in over 3,466 person-hours of annotation work.
- Score: 11.040918613968854
- License:
- Abstract: When designing an AI-assisted decision-making system, there is often a tradeoff between precision and recall in the AI's recommendations. We argue that careful exploitation of this tradeoff can harness the complementary strengths in the human-AI collaboration to significantly improve team performance. We investigate a real-world video anonymization task for which recall is paramount and more costly to improve. We analyze the performance of 78 professional annotators working with a) no AI assistance, b) a high-precision "restrained" AI, and c) a high-recall "zealous" AI in over 3,466 person-hours of annotation work. In comparison, the zealous AI helps human teammates achieve significantly shorter task completion time and higher recall. In a follow-up study, we remove AI assistance for everyone and find negative training effects on annotators trained with the restrained AI. These findings and our analysis point to important implications for the design of AI assistance in recall-demanding scenarios.
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
We develop an AI program for an exceptionally complex and popular card game called GuanDan.
We first put forward an AI program named DanZero for this game.
In order to further enhance the AI's capabilities, we apply policy-based reinforcement learning algorithm to GuanDan.
arXiv Detail & Related papers (2023-12-05T08:07:32Z) - Understanding the Effect of Counterfactual Explanations on Trust and
Reliance on AI for Human-AI Collaborative Clinical Decision Making [5.381004207943597]
We conducted an experiment with seven therapists and ten laypersons on the task of assessing post-stroke survivors' quality of motion.
We analyzed their performance, agreement level on the task, and reliance on AI without and with two types of AI explanations.
Our work discusses the potential of counterfactual explanations to better estimate the accuracy of an AI model and reduce over-reliance on wrong' AI outputs.
arXiv Detail & Related papers (2023-08-08T16:23:46Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
People work with AI systems to improve their decision making, but often under- or over-rely on AI predictions and perform worse than they would have unassisted.
To help people appropriately rely on AI aids, we propose showing them behavior descriptions.
arXiv Detail & Related papers (2023-01-06T00:33:08Z) - Advancing Human-AI Complementarity: The Impact of User Expertise and
Algorithmic Tuning on Joint Decision Making [10.890854857970488]
Many factors can impact success of Human-AI teams, including a user's domain expertise, mental models of an AI system, trust in recommendations, and more.
Our study examined user performance in a non-trivial blood vessel labeling task where participants indicated whether a given blood vessel was flowing or stalled.
Our results show that while recommendations from an AI-Assistant can aid user decision making, factors such as users' baseline performance relative to the AI and complementary tuning of AI error types significantly impact overall team performance.
arXiv Detail & Related papers (2022-08-16T21:39:58Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Does the Whole Exceed its Parts? The Effect of AI Explanations on
Complementary Team Performance [44.730580857733]
Prior studies observed improvements from explanations only when the AI, alone, outperformed both the human and the best team.
We conduct mixed-method user studies on three datasets, where an AI with accuracy comparable to humans helps participants solve a task.
We find explanations increase the chance that humans will accept the AI's recommendation, regardless of its correctness.
arXiv Detail & Related papers (2020-06-26T03:34:04Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
We argue that AI systems should be trained in a human-centered manner, directly optimized for team performance.
We study this proposal for a specific type of human-AI teaming, where the human overseer chooses to either accept the AI recommendation or solve the task themselves.
Our experiments with linear and non-linear models on real-world, high-stakes datasets show that the most accuracy AI may not lead to highest team performance.
arXiv Detail & Related papers (2020-04-27T19:06:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.