Towards using Reinforcement Learning for Scaling and Data Replication in Cloud Systems
- URL: http://arxiv.org/abs/2410.11862v1
- Date: Mon, 07 Oct 2024 11:32:35 GMT
- Title: Towards using Reinforcement Learning for Scaling and Data Replication in Cloud Systems
- Authors: Riad Mokadem, Fahem Arar, Djamel Eddine Zegour,
- Abstract summary: Reinforcement learning is used in many areas related to the Cloud Computing, and it is a promising field to get automatic data replication strategies.
In this work, we survey data replication strategies and data scaling based on reinforcement learning (RL)
- Score: 0.49157446832511503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given its intuitive nature, many Cloud providers opt for threshold-based data replication to enable automatic resource scaling. However, setting thresholds effectively needs human intervention to calibrate thresholds for each metric and requires a deep knowledge of current workload trends, which can be challenging to achieve. Reinforcement learning is used in many areas related to the Cloud Computing, and it is a promising field to get automatic data replication strategies. In this work, we survey data replication strategies and data scaling based on reinforcement learning (RL).
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - Scaling DRL for Decision Making: A Survey on Data, Network, and Training Budget Strategies [66.83950068218033]
Scaling Laws demonstrate that scaling model parameters and training data enhances learning performance.<n>Despite its potential to improve performance, the integration of scaling laws into deep reinforcement learning has not been fully realized.<n>This review addresses this gap by systematically analyzing scaling strategies in three dimensions: data, network, and training budget.
arXiv Detail & Related papers (2025-08-05T08:03:12Z) - Selective Embedding for Deep Learning [0.4499833362998489]
Deep learning algorithms are sensitive to input data, and performance often deteriorates under nonstationary conditions.<n>This study introduces selective embedding, a novel data loading strategy, which alternates short segments of data from multiple sources within a single input channel.
arXiv Detail & Related papers (2025-07-16T15:45:01Z) - Query-Based Adaptive Aggregation for Multi-Dataset Joint Training Toward Universal Visual Place Recognition [10.8843105310375]
Query-based Adaptive Aggregation (QAA) is a novel feature aggregation technique that leverages learned queries as reference codebooks.<n>We show that QAA outperforms state-of-the-art models, achieving balanced generalization across diverse datasets while maintaining peak performance comparable to dataset-specific models.
arXiv Detail & Related papers (2025-07-04T22:40:03Z) - FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL) has emerged as a promising framework for distributed machine learning.
Data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning.
We propose Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process.
arXiv Detail & Related papers (2025-03-20T04:49:40Z) - Hammer: Towards Efficient Hot-Cold Data Identification via Online Learning [12.60117987781744]
Management of storage resources in big data and cloud computing environments requires accurate identification of data's "cold" and "hot" states.
Traditional methods, such as rule-based algorithms and early AI techniques, often struggle with dynamic workloads.
We propose a novel solution based on online learning strategies, achieving higher accuracy and lower operational costs.
arXiv Detail & Related papers (2024-11-22T06:46:16Z) - CUDC: A Curiosity-Driven Unsupervised Data Collection Method with
Adaptive Temporal Distances for Offline Reinforcement Learning [62.58375643251612]
We propose a Curiosity-driven Unsupervised Data Collection (CUDC) method to expand feature space using adaptive temporal distances for task-agnostic data collection.
With this adaptive reachability mechanism in place, the feature representation can be diversified, and the agent can navigate itself to collect higher-quality data with curiosity.
Empirically, CUDC surpasses existing unsupervised methods in efficiency and learning performance in various downstream offline RL tasks of the DeepMind control suite.
arXiv Detail & Related papers (2023-12-19T14:26:23Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
Recent advances in batch (offline) reinforcement learning have shown promising results in learning from available offline data.
We propose a novel approach that uses uncertainty estimation to trigger the injection of human demonstration data.
Our experiments show that this approach is more sample efficient when compared to a naive way of combining expert data with data collected from a sub-optimal agent.
arXiv Detail & Related papers (2022-12-16T01:41:59Z) - Outsourcing Training without Uploading Data via Efficient Collaborative
Open-Source Sampling [49.87637449243698]
Traditional outsourcing requires uploading device data to the cloud server.
We propose to leverage widely available open-source data, which is a massive dataset collected from public and heterogeneous sources.
We develop a novel strategy called Efficient Collaborative Open-source Sampling (ECOS) to construct a proximal proxy dataset from open-source data for cloud training.
arXiv Detail & Related papers (2022-10-23T00:12:18Z) - Segmentation-guided Domain Adaptation for Efficient Depth Completion [3.441021278275805]
We propose an efficient depth completion model based on a vgg05-like CNN architecture and a semi-supervised domain adaptation approach.
In order to boost spatial coherence, we guide the learning process using segmentations as additional source of information.
Our approach improves on previous efficient and low parameter state of the art approaches while having a noticeably lower computational footprint.
arXiv Detail & Related papers (2022-10-14T13:01:25Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - Deep invariant networks with differentiable augmentation layers [87.22033101185201]
Methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems.
We show that our approach is easier and faster to train than modern automatic data augmentation techniques.
arXiv Detail & Related papers (2022-02-04T14:12:31Z) - Adaptive Explainable Continual Learning Framework for Regression
Problems with Focus on Power Forecasts [0.0]
Two continual learning scenarios will be proposed to describe the potential challenges in this context.
Deep neural networks have to learn new tasks and overcome forgetting the knowledge obtained from the old tasks as the amount of data keeps increasing in applications.
Research topics are related but not limited to developing continual deep learning algorithms, strategies for non-stationarity detection in data streams, explainable and visualizable artificial intelligence, etc.
arXiv Detail & Related papers (2021-08-24T14:59:10Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Deep Transfer Learning with Ridge Regression [7.843067454030999]
Deep models trained with massive amounts of data demonstrate promising generalisation ability on unseen data from relevant domains.
We address this issue by leveraging the low-rank property of learnt feature vectors produced from deep neural networks (DNNs) with the closed-form solution provided in kernel ridge regression (KRR)
Our method is successful on supervised and semi-supervised transfer learning tasks.
arXiv Detail & Related papers (2020-06-11T20:21:35Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.