論文の概要: Rescriber: Smaller-LLM-Powered User-Led Data Minimization for Navigating Privacy Trade-offs in LLM-Based Conversational Agent
- arxiv url: http://arxiv.org/abs/2410.11876v1
- Date: Thu, 10 Oct 2024 01:23:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:42:59.840898
- Title: Rescriber: Smaller-LLM-Powered User-Led Data Minimization for Navigating Privacy Trade-offs in LLM-Based Conversational Agent
- Title(参考訳): LLMベースの会話エージェントにおけるプライバシトレードオフをナビゲートするための小型LLMによるユーザ主導データ最小化
- Authors: Jijie Zhou, Eryue Xu, Yaoyao Wu, Tianshi Li,
- Abstract要約: Rescriberは、LLMベースの会話エージェントでユーザ主導のデータ最小化をサポートするブラウザエクステンションである。
我々の研究によると、Rescriberはユーザーが不必要な開示を減らし、プライバシー上の懸念に対処するのに役立ちました。
以上の結果から,LLMによる小型ユーザ向けオンデバイスプライバシコントロールの実現可能性が確認された。
- 参考スコア(独自算出の注目度): 2.2447085410328103
- License:
- Abstract: The proliferation of LLM-based conversational agents has resulted in excessive disclosure of identifiable or sensitive information. However, existing technologies fail to offer perceptible control or account for users' personal preferences about privacy-utility tradeoffs due to the lack of user involvement. To bridge this gap, we designed, built, and evaluated Rescriber, a browser extension that supports user-led data minimization in LLM-based conversational agents by helping users detect and sanitize personal information in their prompts. Our studies (N=12) showed that Rescriber helped users reduce unnecessary disclosure and addressed their privacy concerns. Users' subjective perceptions of the system powered by Llama3-8B were on par with that by GPT-4. The comprehensiveness and consistency of the detection and sanitization emerge as essential factors that affect users' trust and perceived protection. Our findings confirm the viability of smaller-LLM-powered, user-facing, on-device privacy controls, presenting a promising approach to address the privacy and trust challenges of AI.
- Abstract(参考訳): LLMに基づく会話エージェントの増殖は、識別または機密情報の過剰な開示をもたらす。
しかし、既存の技術では、ユーザの関与の欠如により、プライバシーとユーティリティのトレードオフに関するユーザの個人的な好みを認識可能なコントロールや説明できない。
このギャップを埋めるために、私たちはLLMベースの会話エージェントにおけるユーザ主導のデータ最小化をサポートするブラウザエクステンションであるRescriberを設計、構築、評価し、ユーザがプロンプトで個人情報を検知し、衛生化するのを支援した。
我々の研究(N=12)は、Rescriberが不必要な開示を減らし、プライバシー上の懸念に対処するのに役立つことを示した。
Llama3-8Bによるシステムに対するユーザの主観的認識は、GPT-4と同等であった。
検知と衛生の包括性と一貫性は、ユーザの信頼と認識する保護に影響を与える重要な要因として現れます。
以上の結果から,より小型でユーザ対応のオンデバイスプライバシコントロールが実現可能であることが確認され,AIのプライバシと信頼性の課題に対処する,有望なアプローチが提示された。
関連論文リスト
- PRIV-QA: Privacy-Preserving Question Answering for Cloud Large Language Models [10.050972891318324]
本稿では,ユーザと大規模言語モデル間のインタラクションにおいて,プライバシとセンシティブな情報を保護するためのプライバシ保護パイプラインを提案する。
プライバシを開放した最初の質問応答データセットであるSensitiveQAを構築した。
提案手法は,クラウド上でのLCMの応答品質を同時に保ちながら,ユーザ情報の事前確保を目的としたマルチステージ戦略を用いている。
論文 参考訳(メタデータ) (2025-02-19T09:17:07Z) - Gensors: Authoring Personalized Visual Sensors with Multimodal Foundation Models and Reasoning [61.17099595835263]
Gensorsは、ユーザがMLLMの推論能力によってサポートされているカスタマイズされたセンサーを定義することを可能にするシステムである。
ユーザスタディでは、Gensorsを用いてセンサーを定義するとき、参加者はコントロール、理解、コミュニケーションの容易さを著しく向上させた。
論文 参考訳(メタデータ) (2025-01-27T01:47:57Z) - Preempting Text Sanitization Utility in Resource-Constrained Privacy-Preserving LLM Interactions [4.372695214012181]
本稿では,大規模言語モデルに送信される前に,衛生効果がプロンプトに与える影響を推定するアーキテクチャを提案する。
このアーキテクチャを評価した結果,差分プライバシーに基づくテキストのサニタイズに重大な問題があることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-18T12:31:22Z) - Privacy Leakage Overshadowed by Views of AI: A Study on Human Oversight of Privacy in Language Model Agent [1.5020330976600738]
個人のタスクを代行する言語モデル(LM)エージェントは生産性を向上するが、意図しないプライバシー漏洩のリスクも受けやすい。
本研究は、LMエージェントのプライバシ含意を監督する人々の能力に関する最初の研究である。
論文 参考訳(メタデータ) (2024-11-02T19:15:42Z) - MisinfoEval: Generative AI in the Era of "Alternative Facts" [50.069577397751175]
本稿では,大規模言語モデル(LLM)に基づく誤情報介入の生成と評価を行うフレームワークを提案する。
本研究では,(1)誤情報介入の効果を測定するための模擬ソーシャルメディア環境の実験,(2)ユーザの人口動態や信念に合わせたパーソナライズされた説明を用いた第2の実験について述べる。
以上の結果から,LSMによる介入はユーザの行動の修正に極めて有効であることが確認された。
論文 参考訳(メタデータ) (2024-10-13T18:16:50Z) - Prompt Tuning as User Inherent Profile Inference Machine [53.78398656789463]
本稿では,ユーザプロファイルの推測にプロンプトチューニングを用いるUserIP-Tuningを提案する。
プロファイル量子化コードブックは、プロファイル埋め込みによるモダリティギャップを協調IDにブリッジする。
4つの公開データセットの実験では、UserIP-Tuningは最先端のレコメンデーションアルゴリズムを上回っている。
論文 参考訳(メタデータ) (2024-08-13T02:25:46Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Privacy-Preserving End-to-End Spoken Language Understanding [7.501598786895441]
人間のスピーチには、性別、アイデンティティ、センシティブなコンテンツなど、多くのユーザセンシティブな情報が含まれる。
新たなタイプのセキュリティおよびプライバシ侵害が出現した。ユーザは、信頼できない第三者による悪意ある攻撃に対して、個人情報を公開したくない。
本稿では,音声認識(ASR)とID認識(IR)の両方を防止するために,新しいマルチタスクプライバシ保護モデルを提案する。
論文 参考訳(メタデータ) (2024-03-22T03:41:57Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
私たちは、最も有能なAIモデルでさえ、人間がそれぞれ39%と57%の確率で、プライベートな情報を公開していることを示しています。
我々の研究は、推論と心の理論に基づいて、新しい推論時プライバシー保護アプローチを即時に探求する必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-10-27T04:15:30Z) - "It's a Fair Game", or Is It? Examining How Users Navigate Disclosure Risks and Benefits When Using LLM-Based Conversational Agents [27.480959048351973]
大規模言語モデル(LLM)ベースの会話エージェント(CA)の普及は、多くのプライバシー上の懸念を引き起こす。
実世界のChatGPT会話における機密情報開示を分析し,19名のLCMユーザを対象に半構造化インタビューを行った。
LLMベースのCAを使用する場合,ユーザは常に,プライバシやユーティリティ,利便性のトレードオフに直面しています。
論文 参考訳(メタデータ) (2023-09-20T21:34:36Z) - Privacy Explanations - A Means to End-User Trust [64.7066037969487]
この問題に対処するために、説明可能性がどのように役立つかを検討しました。
私たちはプライバシーの説明を作成し、エンドユーザの理由と特定のデータが必要な理由を明らかにするのに役立ちました。
我々の発見は、プライバシーの説明がソフトウェアシステムの信頼性を高めるための重要なステップであることを示している。
論文 参考訳(メタデータ) (2022-10-18T09:30:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。