論文の概要: Dual-frame Fluid Motion Estimation with Test-time Optimization and Zero-divergence Loss
- arxiv url: http://arxiv.org/abs/2410.11934v1
- Date: Tue, 15 Oct 2024 18:00:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:42:24.280175
- Title: Dual-frame Fluid Motion Estimation with Test-time Optimization and Zero-divergence Loss
- Title(参考訳): テスト時間最適化とゼロ偏差損失を用いたデュアルフレーム流体運動推定
- Authors: Yifei Zhang, Huan-ang Gao, Zhou Jiang, Hao Zhao,
- Abstract要約: 3次元粒子追跡速度計(PTV)は乱流解析の鍵となる技術である。
深層学習に基づく手法は、2フレームの流体運動推定において顕著な精度を達成している。
我々は,完全に自己管理された新しい手法を導入し,完全に教師された手法よりも優れていた。
- 参考スコア(独自算出の注目度): 9.287932323337163
- License:
- Abstract: 3D particle tracking velocimetry (PTV) is a key technique for analyzing turbulent flow, one of the most challenging computational problems of our century. At the core of 3D PTV is the dual-frame fluid motion estimation algorithm, which tracks particles across two consecutive frames. Recently, deep learning-based methods have achieved impressive accuracy in dual-frame fluid motion estimation; however, they heavily depend on large volumes of labeled data. In this paper, we introduce a new method that is completely self-supervised and notably outperforms its fully-supervised counterparts while requiring only 1% of the training samples (without labels) used by previous methods. Our method features a novel zero-divergence loss that is specific to the domain of turbulent flow. Inspired by the success of splat operation in high-dimensional filtering and random fields, we propose a splat-based implementation for this loss which is both efficient and effective. The self-supervised nature of our method naturally supports test-time optimization, leading to the development of a tailored Dynamic Velocimetry Enhancer (DVE) module. We demonstrate that strong cross-domain robustness is achieved through test-time optimization on unseen leave-one-out synthetic domains and real physical/biological domains. Code, data and models are available at https://github.com/Forrest-110/FluidMotionNet.
- Abstract(参考訳): 3次元粒子追跡速度計 (PTV) は, この世紀で最も困難な計算問題の一つである乱流解析の鍵となる技術である。
3D PTVのコアとなるのは、2つの連続するフレームにわたる粒子を追跡する2フレームの流体運動推定アルゴリズムである。
近年, 深層学習に基づく手法は, 2フレームの流体運動推定において顕著な精度を達成しているが, ラベル付きデータの量に大きく依存している。
本稿では,従来の手法で使用したトレーニングサンプル(ラベルなし)の1%しか必要とせず,完全に自己管理され,特に完全教師付き手法よりも優れる新しい手法を提案する。
本手法は乱流領域に特有の新しいゼロ偏差損失を特徴とする。
高次元フィルタリングおよびランダムフィールドにおけるスプレート操作の成功に触発されて、この損失に対するスプレートに基づく実装を提案し、効率的かつ効果的である。
本手法の自己監督特性はテスト時間最適化を自然にサポートし,DVE(Dynamic Velocimetry Enhancer)モジュールの開発に繋がる。
本研究は, 未確認残余合成ドメインと実物/生物領域の試験時間最適化により, 強いクロスドメインロバスト性を実現することを実証する。
コード、データ、モデルはhttps://github.com/Forrest-110/FluidMotionNetで入手できる。
関連論文リスト
- ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
既存の手法は、これらのタスクの要求に応えるために高い精度を優先する。
本稿では,3次元セマンティック占有率予測とフロー推定のための一連の改善点を紹介する。
私たちの純粋な時間的アーキテクチャフレームワークであるALOccは、速度と精度の最適なトレードオフを実現しています。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
ニューロモルフィックなイベントベースカメラを用いて衝突時刻を推定する新しい手法を提案する。
提案アルゴリズムは, 事象データに適合する幾何モデルに対して, 効率的かつ高精度な2段階のアプローチで構成する。
合成データと実データの両方の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-10T02:37:36Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - Re-Evaluating LiDAR Scene Flow for Autonomous Driving [80.37947791534985]
自己教師型LiDARシーンフローの一般的なベンチマークは、動的動き、非現実的な対応、非現実的なサンプリングパターンの非現実的な速度を持つ。
実世界のデータセットのスイート上で,トップメソッドのスイートを評価する。
学習に重点を置いているにもかかわらず、ほとんどのパフォーマンス向上は前処理と後処理のステップによって引き起こされる。
論文 参考訳(メタデータ) (2023-04-04T22:45:50Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
本稿では,分散動的安全スクリーニング(DDSS)手法を提案し,共有メモリアーキテクチャと分散メモリアーキテクチャにそれぞれ適用する。
提案手法は, 線形収束率を低次複雑度で達成し, 有限個の繰り返しにおいてほとんどすべての不活性な特徴をほぼ確実に除去できることを示す。
論文 参考訳(メタデータ) (2022-04-23T02:45:55Z) - Learning to Fit Morphable Models [12.469605679847085]
学習最適化の最近の進歩の上に構築し、古典的なレバンス・マルカルトアルゴリズムに触発された更新ルールを提案する。
本稿では,頭部装着装置による3次元体表面推定問題と2次元ランドマークによる顔の嵌合性に対するニューラルネットワークの有効性を示す。
論文 参考訳(メタデータ) (2021-11-29T18:59:53Z) - Efficient Two-Stream Network for Violence Detection Using Separable
Convolutional LSTM [0.0]
Separable Convolutional LSTM(SepConvLSTM)と予め訓練されたMobileNetを活用した効率的な2ストリームディープラーニングアーキテクチャを提案する。
SepConvLSTMは、ConvLSTMの各ゲートの畳み込み操作を深さ方向に分離可能な畳み込みに置き換えて構築されます。
我々のモデルは、大きくて挑戦的なrwf-2000データセットの精度を2%以上上回っている。
論文 参考訳(メタデータ) (2021-02-21T12:01:48Z) - FlowMOT: 3D Multi-Object Tracking by Scene Flow Association [9.480272707157747]
従来のマッチングアルゴリズムと点運動情報を統合するLiDARベースの3D MOTフレームワークFlowMOTを提案する。
提案手法は,最新のエンドツーエンド手法より優れ,最先端のフィルタ方式と競合する性能を実現する。
論文 参考訳(メタデータ) (2020-12-14T14:03:48Z) - Towards Fast, Accurate and Stable 3D Dense Face Alignment [73.01620081047336]
本稿では,速度,精度,安定性のバランスをとる3DDFA-V2という新しい回帰フレームワークを提案する。
本研究では,静止画を平面内と面外の動きを取り入れた映像に変換する仮想合成法を提案する。
論文 参考訳(メタデータ) (2020-09-21T15:37:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。