Boosting Logical Fallacy Reasoning in LLMs via Logical Structure Tree
- URL: http://arxiv.org/abs/2410.12048v1
- Date: Tue, 15 Oct 2024 20:35:50 GMT
- Title: Boosting Logical Fallacy Reasoning in LLMs via Logical Structure Tree
- Authors: Yuanyuan Lei, Ruihong Huang,
- Abstract summary: We propose to build a logical structure tree to represent and track the hierarchical logic flow among relation connectives and their arguments in a statement.
Specifically, this logical structure tree is constructed in an unsupervised manner guided by the constituency tree and a taxonomy of connectives for ten common logical relations.
We develop two strategies to incorporate the logical structure tree into LLMs for fallacy reasoning.
- Score: 18.351777831207965
- License:
- Abstract: Logical fallacy uses invalid or faulty reasoning in the construction of a statement. Despite the prevalence and harmfulness of logical fallacies, detecting and classifying logical fallacies still remains a challenging task. We observe that logical fallacies often use connective words to indicate an intended logical relation between two arguments, while the argument semantics does not actually support the logical relation. Inspired by this observation, we propose to build a logical structure tree to explicitly represent and track the hierarchical logic flow among relation connectives and their arguments in a statement. Specifically, this logical structure tree is constructed in an unsupervised manner guided by the constituency tree and a taxonomy of connectives for ten common logical relations, with relation connectives as non-terminal nodes and textual arguments as terminal nodes, and the latter are mostly elementary discourse units. We further develop two strategies to incorporate the logical structure tree into LLMs for fallacy reasoning. Firstly, we transform the tree into natural language descriptions and feed the textualized tree into LLMs as a part of the hard text prompt. Secondly, we derive a relation-aware tree embedding and insert the tree embedding into LLMs as a soft prompt. Experiments on benchmark datasets demonstrate that our approach based on logical structure tree significantly improves precision and recall for both fallacy detection and fallacy classification.
Related papers
- Divide and Translate: Compositional First-Order Logic Translation and Verification for Complex Logical Reasoning [28.111458981621105]
Complex logical reasoning tasks require a long sequence of reasoning, which a large language model (LLM) with chain-of-thought prompting still falls short.
We propose a Compositional First-Order Logic Translation to capture logical semantics hidden in the natural language during translation.
We evaluate the proposed method, dubbed CLOVER, on seven logical reasoning benchmarks and show that it outperforms the previous neurosymbolic approaches.
arXiv Detail & Related papers (2024-10-10T15:42:39Z) - Disentangling Logic: The Role of Context in Large Language Model Reasoning Capabilities [31.728976421529577]
We investigate the contrast across abstract and contextualized logical problems from a comprehensive set of domains.
We focus on standard propositional logic, specifically propositional deductive and abductive logic reasoning.
Our experiments aim to provide insights into disentangling context in logical reasoning and the true reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-06-04T21:25:06Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
Two lines of approaches are adopted for complex reasoning with LLMs.
One line of work prompts LLMs with various reasoning structures, while the structural outputs can be naturally regarded as intermediate reasoning steps.
The other line of work adopt LLM-free declarative solvers to do the reasoning task, rendering higher reasoning accuracy but lacking interpretability due to the black-box nature of the solvers.
We present a simple extension to the latter line of work. Specifically, we showcase that the intermediate search logs generated by Prolog interpreters can be accessed and interpreted into human-readable reasoning.
arXiv Detail & Related papers (2023-11-16T11:26:21Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
Logical reasoning is an important task for artificial intelligence with potential impacts on science, mathematics, and society.
In this work, we reformulating such tasks as modular neurosymbolic programming, which we call LINC.
We observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate.
arXiv Detail & Related papers (2023-10-23T17:58:40Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Discourse-Aware Graph Networks for Textual Logical Reasoning [142.0097357999134]
Passage-level logical relations represent entailment or contradiction between propositional units (e.g., a concluding sentence)
We propose logic structural-constraint modeling to solve the logical reasoning QA and introduce discourse-aware graph networks (DAGNs)
The networks first construct logic graphs leveraging in-line discourse connectives and generic logic theories, then learn logic representations by end-to-end evolving the logic relations with an edge-reasoning mechanism and updating the graph features.
arXiv Detail & Related papers (2022-07-04T14:38:49Z) - Logic-Driven Context Extension and Data Augmentation for Logical
Reasoning of Text [65.24325614642223]
We propose to understand logical symbols and expressions in the text to arrive at the answer.
Based on such logical information, we put forward a context extension framework and a data augmentation algorithm.
Our method achieves the state-of-the-art performance, and both logic-driven context extension framework and data augmentation algorithm can help improve the accuracy.
arXiv Detail & Related papers (2021-05-08T10:09:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.